PCL 点云均匀下采样 [附代码实现+示例]

🙋 结果预览
在这里插入图片描述

一、概述

点云均匀采样:即从点云中按照一定的间隔等距地选择一部分点作为输出的采样点云。
使用:函数的输入参数包括一个输入点云对象和一个采样点的距离间隔(采样密度)。函数会遍历整个输入点云,在每个采样间隔内选择一个点作为输出点云的采样点。函数的输出是一个新的点云对象,其中包含了按照采样间隔从输入点云中选择出来的采样点。
优点:使用均匀采样可以降低点云数据量,减少计算复杂度,并且保留了点云的整体结构特征。

二、代码示例

点云采样点云处理中非常常见的一种操作,其目的是减少点云数据量,简化点云形状,提高点云处理效率。均匀采样是其中一种常见的采样方式,其原理是在点云均匀地取出一部分点,使得采样点云的形状尽可能保持原来的形状。 下面是使用C++ PCL库进行均匀采样示例代码: ```c++ #include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/filters/uniform_sampling.h> int main(int argc, char** argv) { // 读取点云文件 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::PCDReader reader; reader.read<pcl::PointXYZ>("input_cloud.pcd", *cloud); // 定义采样间隔 float leaf_size = 0.01f; // 定义采样器对象 pcl::UniformSampling<pcl::PointXYZ> uniform_sampling; uniform_sampling.setInputCloud(cloud); uniform_sampling.setRadiusSearch(leaf_size); // 执行采样操作 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>); uniform_sampling.filter(*cloud_filtered); // 保存采样后的点云文件 pcl::PCDWriter writer; writer.write<pcl::PointXYZ>("output_cloud.pcd", *cloud_filtered, false); return 0; } ``` 以上代码中,我们使用了PCL库中的UniformSampling类来实现均匀采样操作,其具体原理是:在点云中以一定的半径搜索出所有点,然后从中均匀地选择一部分点作为采样结果。 通过设置setRadiusSearch()函数来设置采样半径,即采样间隔。最后通过调用filter()函数来执行采样操作,并将采样结果保存到文件中。 注意:在使用UniformSampling类进行均匀采样时,需要保证点云中至少有一个点在采样半径范围内,否则采样结果将为空。因此,在实际应用中需要根据点云的密度和形状合理地设置采样半径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶探索站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值