双头注意力(Multi-Head Attention)和多通道注意力(Cross-Attention)是两种不同的注意力机制,它们在深度学习领域中有着各自的应用和特点。以下是它们之间的关系和区别:
1. **多头注意力(Multi-Head Attention)**:
- 多头注意力机制是在自注意力(Self-Attention)基础上的扩展。它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。
- 在多头注意力中,输入序列首先通过三个不同的线性变换层分别得到Query、Key和Value。然后,这些变换后的向量被划分为若干个“头”,每个头都有自己独立的Query、Key和Value矩阵。对于每个头,都执行一次缩放点积注意力(Scaled Dot-Product Attention)运算,即计算Query和Key之间的相似度,用softmax得到注意力权重,最后将所有头的输出拼接在一起,再通过一个线性层进行融合,得到最终的注意力输出向量。
2. **多通道注意力(Cross-Attention)**:
- 多通道注意力机制通常用于处理两个不同序列之间的依赖关系,例如在序列到序列的任务中,如机器翻译。它允许模型关注一个序列的不同部分,以生成另一个序列。
- 与多头注意力不同,多通道注意力关注的是两个不同序列之间的交互,其中一个序列的元素(查询序列)对另一个序列的元素(键值序列)进行加权求和,以得到交叉注意力表示。
3. **区别**:
- **输入**:多头注意力通常处理单个序列,而多通道注意力处理两个不同序列。
- **目的**:多头注意力旨在捕捉序列内部的多层次信息,多通道注意力旨在捕捉两个序列之间的依赖关系。
- **应用场景**:多头注意力广泛应用于NLP、CV等领域,如Transformer编码器;多通道注意力常用于序列到序列的任务,如机器翻译、文本对齐。
- **计算方式**:多头注意力通过多个注意力头并行计算,而多通道注意力计算查询序列与键值序列之间的注意力。
总结来说,多头注意力和多通道注意力都是注意力机制的扩展,但它们关注的重点和应用场景不同。多头注意力通过并行处理多个注意力头来增强模型的表达能力,而多通道注意力则专注于处理两个不同序列之间的交互。