【HarmonyOS】多媒体技术

1. 音频

  • 音频录制
  • 音频渲染
  • 音频流管理
  • 音频采集
  • OpenSL ES 播放
  • OpenSL ES 录音
  • 音频焦点模式
  • 音量管理
  • 路由、设备管理

2. 视频

  • 视频播放
  • 视频录制

3. 媒体会话

  • AVSession 开发概述
  • AVSession

4. 图片

  • 图片

5. 相机

  • 相机
  • 分布式相机
### 自动睡眠分期方法概述 自动睡眠分期对于医疗诊断和个人健康管理具有重要意义。一种有效的方法是利用单通道脑电图(EEG)数据结合上下文缩放图(contextual scalograms)和注意力卷积神经网络(attention convolutional neural networks, ACNNs)[^1]。 #### 上下文缩放图的作用 上下文缩放图是一种用于增强时间序列信号表示的技术,在此背景下,通过多尺度分析来捕捉不同频率范围内的特征变化模式。这种方法能够有效地提取出与睡眠阶段密切相关的频谱特性,并将其转换成二维图像形式以便于后续处理。 ```python import numpy as np from scipy.signal import cwt, ricker def create_scalogram(signal, widths=np.arange(1, 31)): """创建给定信号的连续小波变换(CWT)作为其scalogram""" coef = cwt(signal, ricker, widths) return abs(coef) # 假设我们有一个长度为N的一维EEG信号数组eeg_signal scalogram_image = create_scalogram(eeg_signal) ``` #### 注意力机制的应用 为了进一步提高模型性能并更好地模拟人类专家的知识结构,引入了注意力机制到卷积层中去。这使得网络可以自适应地聚焦于输入中最重要部分的信息,从而改善分类效果的同时也增加了可解释性。 ```python import torch.nn.functional as F class AttentionBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.attention_conv = nn.Conv2d(out_channels, 1, kernel_size=1) def forward(self, x): conv_out = F.relu(self.conv(x)) attn_weights = F.softmax(self.attention_conv(conv_out), dim=-1) attended_features = (conv_out * attn_weights).sum(dim=(-1,-2)).unsqueeze(-1).unsqueeze(-1) return attended_features.expand_as(conv_out) + conv_out ``` #### 实验验证与结论 实验表明该方法能够在多个公开数据库上取得优异的成绩,证明了所提出的框架不仅适用于实验室环境下的高质量记录,而且对实际应用场景也有着良好的鲁棒性和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值