JDOJ1098: 夏娜的菠萝包——状压DP

本文探讨如何通过动态规划解决夏娜的菠萝包搭配问题,面对数据限制,利用状态转移方程找到最大美味值策略,同时防范bug和zzy的干扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.题目

Description
问题描述:夏娜很喜欢吃菠萝包,她的经纪人RC每半个月就要为她安排接下来的菠萝包计划。今天是7月份,RC又要去商场进货买菠萝包了。这次RC总共买了N种菠萝包,每种一个。每个菠萝包都有一个初始美味值Ti,每过一天就会减少Di,即第2天美味值为Ti-Di,第3天为Ti-2*Di,依此类推。一旦美味值减为负数,那个包就坏掉了,不能吃了。 RC每天都要为夏娜安排当天吃菠萝包的组合,这些组合不是随意的,而是只能从夏娜喜欢的M种搭配中挑选一种。每种搭配是由Ki个菠萝包组成的,一种搭配的总美味值是这Ki个菠萝包当天的美味值之和再加上一个额外的搭配美味值Ei。不过要注意,一旦某种搭配的其中一个菠萝包坏掉了,这个搭配就不能选用了。而且,有可能存在两个搭配,里面的组合是一样的,但额外的搭配美味值却不同。 RC想让可爱的夏娜尽可能地吃得美味,因此希望能找出一种最优的方案,让小夏娜吃上若干天的菠萝包,这些天的美味值之和最大。但RC面临着两个邪恶的敌人,一个叫bug,一个叫zzy,他们也想抢夺这个经纪人之位,因此要是他们提出更优的方案,RC就可能会失去他的夏娜了。那么,你们能帮帮这个可怜的RC吗?
数据范围
n ≤ 14 , m ≤ 20 n\leq 14,m\leq 20 n14,m20
传送门

二.Solution

一眼状压DP,对吧,这数据范围,绝了。
考虑定义状态:

d p [ i ] [ j ] dp[i][j] dp[i][j]表示第 i i i天吃了的菠萝包的状态为 j j j的最大美味值

于是有状态转移:
d p [ i ] [ j ] = m a x ( d p [ i ] [ j ] , d p [ i − 1 ] [ j 异 或 t y p e [ k ] ] + w [ k ] [ i ] ) dp[i][j] = max(dp[i][j], dp[i - 1][j 异或 type[k]]+w[k][i]) dp[i][j]=max(dp[i][j],dp[i1][jtype[k]]+w[k][i])
w[k][i]是第i天k种搭配的美味值,预处理一下就行了。

三.Code

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

#define M 50
#define INF 0x3f3f3f3f

int n, m, t[M], d[M], k[M], e[M], w[M][M], dp[M][(1 << 14)], type[M], ans;

int main (){
    while (scanf ("%d", &n) && n){
        ans = 0;
        memset (dp, 0, sizeof dp);
        memset (w, 0, sizeof w);
        memset (type, 0, sizeof type);
        for (int i = 1; i <= n; i ++){
            scanf ("%d %d", &t[i], &d[i]);
        }
        scanf ("%d", &m);
        for (int i = 1; i <= m; i ++){
            scanf ("%d %d", &k[i], &e[i]);
            for (int j = 1; j <= k[i]; j ++){
                int id;
                scanf ("%d", &id);
                type[i] ^= (1 << id - 1);
                for (int z = 0; z < n; z ++){
                    w[i][z + 1] += t[id] - d[id] * z;
                    if (t[id] - d[id] * z < 0)
                        w[i][z + 1] = -INF;
                }
            }
        }
        for (int i = 1; i <= m; i ++)
            for (int j = 1; j <= n; j ++)
                w[i][j] += e[i];
        for (int i = 1; i <= n; i ++){
            for (int j = 0; j < (1 << n); j ++){
                for (int z = 1; z <= m; z ++){
                    if ((j & type[z]) == type[z])
                        dp[i][j] = max (dp[i][j], dp[i - 1][j ^ type[z]] + w[z][i]);
                }
                ans = max (ans, dp[i][j]);
            }
        }
        printf ("%d\n", ans);
    }
    return 0;
}

Thanks!

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值