GoogLeNet Pytorch实现【初学者】

1. 内容来源

GoogLeNet_哔哩哔哩_bilibiliGoogLeNet是27 含并行连结的网络 GoogLeNet / Inception V3【动手学深度学习v2】的第1集视频,该合集共计3集,视频收藏或关注UP主,及时了解更多相关视频内容。https://www.bilibili.com/video/BV1b5411g7Xo?p=1&vd_source=f94822d3eca79b8e245bb58bbced6b77

2. Pytorch实现

2.1 Inception块

 (图源:GoogLeNet_哔哩哔哩_bilibili

本系列中LeNetAlexNetVGGNiN中交替选用了1*1/3*3/5*5卷积核以及各种池化层。为了减少使用大核卷积层带来参数量大的问题,以及提高网络多样性,如上图所示,GoogLeNet使用Inception块,采用多支路的方式集成不同模块。

Inception块结构特点:

  1. 支路一,使用1*1卷积层,提取通道信息
  2. 支路二,使用1*1卷积层降低通道数,接3*3卷积层提取空间信息并提高通道数
  3. 支路三,使用1*1卷积层降低通道数,接5*5卷积层提取空间信息并提高通道数
  4. 支路四,使用3*3最大池化提取空间信息,接1*1卷积层降低通道数
  5. 最后将四个支路的所有特征图在通道数维度进行拼接

从代码的角度,每一个Inception块需要(输入通道数,各个支路模块输出通道数)

代码实现:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Inception(nn.Module):
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
        
    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)

其中,卷积层和池化层的步长、填充都是为了让不同支路(下文简称P)的特征图大小保证一致,从而可以在通道数进行拼接

2.2 GoogLeNet构建

 (图源:GoogLeNet_哔哩哔哩_bilibili) 

 如上图所示为GoogLeNet网络架构,每一个Stage表示将输入特征图长宽减半。

GoogLeNet网络详细结构:

Stage1

  1. 卷积层1(输入通道1,输出通道64,7*7核,2步长,1填充)
  2. ReLU
  3. 最大池化层1(3*3核,2步长,1填充)

Stage2

  1. 卷积层1(输入通道64,输出通道64,1*1核,0步长,0填充)
  2. ReLU
  3. 卷积层2(输入通道64,输出通道192,3*3核,0步长,1填充)
  4. 最大池化层1(3*3核,2步长,1填充)

Stage3

  1. Inception块1(输入通道192,P1 64通道,P2(96-128)通道,P3(16-32),P4 32通道)
  2. Inception块2(输入通道256,P1 128通道,P2(128-192)通道,P3(32-96),P4 64通道)
  3. 最大池化层1(3*3核,2步长,1填充)

Stage4

  1. Inception块1(输入通道480,P1 192通道,P2(96-208)通道,P3(16-48),P4 64通道)
  2. Inception块2(输入通道512,P1 160通道,P2(112-224)通道,P3(24-64),P4 64通道)
  3. Inception块3(输入通道512,P1 128通道,P2(128-256)通道,P3(24-64),P4 64通道)
  4. Inception块4(输入通道512,P1 112通道,P2(144-288)通道,P3(24-64),P4 64通道)
  5. Inception块5(输入通道528,P1 256通道,P2(160-320)通道,P3(24-128),P4 128通道)
  6. 最大池化层1(3*3核,2步长,1填充)

Stage5

  1. Inception块1(输入通道832,P1 256通道,P2(160-320)通道,P3(32-128),P4 128通道)
  2. Inception块2(输入通道832,P1 384通道,P2(192-384)通道,P3(48-128),P4 128通道)
  3. 全局平均池化层1(输出维度(1,1))
  4. 展开
  5. 线性层(1024->10)

代码实现:

# Model
b1 = nn.Sequential(
    nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(), 
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )
b2 = nn.Sequential(
    nn.Conv2d(64, 64, kernel_size=1), nn.ReLU(), 
    nn.Conv2d(64, 192, kernel_size=3, padding=1), 
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )
b3 = nn.Sequential(
    Inception(192, 64, (96, 128), (16, 32), 32), 
    Inception(256, 128, (128, 192), (32, 96), 64), 
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )
b4 = nn.Sequential(
    Inception(480, 192, (96, 208), (16, 48), 64), 
    Inception(512, 160, (112, 224), (24, 64), 64), 
    Inception(512, 128, (128, 256), (24, 64), 64), 
    Inception(512, 112, (144, 288), (32, 64), 64), 
    Inception(528, 256, (160, 320), (32, 128), 128), 
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )
b5 = nn.Sequential(
    Inception(832, 256, (160, 320), (32, 128), 128), 
    Inception(832, 384, (192, 384), (48, 128), 128), 
    nn.AdaptiveAvgPool2d((1, 1)), 
    nn.Flatten()
    )
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

CHECK:

Sequential output shape:   	 torch.Size([1, 64, 24, 24])
Sequential output shape:   	 torch.Size([1, 192, 12, 12])
Sequential output shape:   	 torch.Size([1, 480, 6, 6])
Sequential output shape:   	 torch.Size([1, 832, 3, 3])
Sequential output shape:   	 torch.Size([1, 1024])
Linear output shape:   	     torch.Size([1, 10])

2.3 模型训练

# Training
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果:

loss 0.248, train acc 0.906, test acc 0.891
1676.0 examples/sec on cuda:0
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云龙弓手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值