Data Analysis Pipeline using Pandas DataFrame (使用Pandas DataFrame进行数据分析流程)

1. Duplicates (重复值)

1.1 Check Duplicates (检查重复值)

import pandas as pd

data = {'水果':['苹果','梨','草莓','草莓'],
       '数量':[3,2,5,5],
       '价格':[10,9,8,10]}
df = pd.DataFrame(data)
df

在这里插入图片描述
筛选出水果和价格两列有重复的数据:

df[df.duplicated(subset=['水果', '数量'])]

在这里插入图片描述
统计重复数据的个数:

df.duplicated(subset=['水果', '数量']).sum()

output: 1

1.2 Deduplicate (删除重复值)

deduplicated_df = df.drop_duplicates(subset=['水果', '数量'], keep='first')  # 'first'保留重复数据的第一个样本
deduplicated_df

在这里插入图片描述

2. Overlap (重叠数据)

重叠数据是指在两个dataframe中同时出现的数据。比如,在准备机器学习数据集时,我们通常需要判断训练集、验证集和测试集之间没有太多重叠数据。

2.1 Check Overlap (检查两个dataframe是否含有重叠数据)

通过计算两个dataframe之间的交集实现:

#Create a DataFrame
df1 = {
    'Subject':['semester1','semester2','semester3','semester4','semester1',
               'semester2','semester3'],
    'Score':[62,47,55,74,31,77,85]}
df2 = {
    'Subject':['semester1','semester2','semester3','semester4'],
    'Score':[90,47,85,74]}

df1 = pd.DataFrame(df1,columns=['Subject','Score'])
df2 = pd.DataFrame(df2,columns=['Subject','Score'])

df1:
在这里插入图片描述
df2:
在这里插入图片描述

# 两个dataframe的交集
intersected_df = pd.merge(df1, df2, how='inner')
intersected_df

在这里插入图片描述

2.2 Drop Overlap (删除存在于另一个dataframe的数据)

删除重叠部分的数据,e.g.删除df1中的重叠数据,只需进行减法运算:df1-intersected_df

drop_overlap_df = pd.concat([df1, intersected_df, intersected_df]).drop_duplicates(keep=False)
drop_overlap_df

在这里插入图片描述

References:

[1] pandas中DataFrame如何检测重复值
[2] Pandas中两个dataframe的交集和差集

Pandas pipeline 是一种在 Pandas进行数据处理的技术。它允许将多个操作链接在一起,以形成一个数据处理的流程。通过使用 pipeline,可以简化代码并提高代码的可读性。 在 Pandas 中,可以使用 `pipe` 方法来创建 pipeline。这个方法接受一个或多个函数作为参数,并按顺序应用它们。每个函数将以前一个函数的输出作为输入。 下面是一个示例,展示了如何使用 Pandas pipeline 进行数据处理: ```python import pandas as pd # 创建一个示例 DataFrame data = {'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'city': ['New York', 'London', 'Paris']} df = pd.DataFrame(data) # 定义两个函数来处理数据 def uppercase_names(df): df['name'] = df['name'].str.upper() return df def add_prefix(df, prefix): df['name'] = prefix + df['name'] return df # 使用 pipeline 处理数据 df = df.pipe(uppercase_names).pipe(add_prefix, prefix='Mr. ') print(df) ``` 上述代码中,首先定义了两个函数 `uppercase_names` 和 `add_prefix`。`uppercase_names` 函数将名字转换为大写形式,`add_prefix` 函数在名字前面添加前缀。 然后,通过使用 `pipe` 方法,将这两个函数链接在一起,并将 DataFrame 作为输入传递给第一个函数。每个函数都会在前一个函数的结果上进行操作,并返回处理后的 DataFrame。 最后,通过打印 DataFrame,可以看到经过 pipeline 处理后的结果。 希望这个例子可以帮助你了解 Pandas pipeline 的基本概念和用法。如有任何疑问,请随时提问!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值