深度学习之矩阵形式的链式法则推导

深度学习之矩阵形式的链式法则推导

对于深度学习的基础“梯度下降”和“自动微分”的数学原理网上讲解的博客有很多了,但是目前没看到有讲关于矩阵形式的链式法则的内容,所以写了这篇笔记,供自己学习和复习。

1. 复习基础

我印象中本科生学习的传统微积分中,当时学的是只有标量多元函数才能求梯度,本科阶段也只介绍了标量链式法则。为了尽可能简洁明了地进行推导,首先复习几个简单的概念:

几个基本概念

  • 方向导数:是标量多元函数沿指定方向的变化率,它在原函数的特定某点上是一个数。根据定义,方向导数是原函数沿着这一方向,自变量增加一个无穷小量后的微小变化量,除以这个无穷小量,再取极限得到的一个数。反映了原函数在这个点的特定方向上的函数值变化率。
  • 偏导数:一个多元标量函数对每个自变量各有一个偏导数。其本质是标量多元函数沿着每个元的坐标轴正方向的方向导数。
  • 梯度:是一个向量,向量的每个维度为原函数对该维度的偏导数。同时,其也是原函数在任一点沿所有方向的最大方向导数。它是原函数增长最快的方向。

我本科数学阶段老师上课所讲的多元分析学,研究的函数基本上都在标量多元函数范畴内。

根据国际惯例,本文把标量记作小写字母 x x x向量记作粗体小写字母 x \textbf{x} x或者带有箭头上标的小写字母 x ⃗ \vec{x} x 矩阵记作大写字母 X X X.

举例

下面用一个简单的二元标量函数 y = x 1 2 + x 2 2 y = x_{1}^{2} + x_{2}^{2} y=x12+x22 为例简要介绍以上基本概念:

  1. 方向导数

    ​ 求上述二元标量函数 y = f ( x ⃗ ) y=f(\vec{x}) y=f(x )在点 ( 1 , 1 ) (1,1) (1,1)沿方向 ( − 1 , − 1 ) (-1,-1) (1,1)的方向导数:

    ​ 根据定义:
    方向导数 = lim ⁡ t → 0 f ( x + t ) − f ( x ) t 其中 t 表示沿着指定方向的向量, t 表示方向向量 t 的模长 \textbf{方向导数} = \lim_{t \to 0} \frac{f(\textbf{x}+\textbf{t}) - f(\textbf{x} )}{t} \\ 其中\textbf{t}表示沿着指定方向的向量,t表示方向向量\textbf{t}的模长 方向导数=t0limtf(x+t)f(x)其中t表示沿着指定方向的向量,t表示方向向量t的模长
    ​ 代入数据:
    函数 y = x 1 2 + x 2 2 在点 ( 1 , 1 ) 处 : f ( x ) = 2 将方向向量单位化: ( − 1 2 , − 1 2 ) , 则 lim ⁡ t → 0 t ⃗ = ( − 1 2 t , − 1 2 t ) : 在点 ( 1 − 1 2 t , 1 − 1 2 t ) 处 : f ( x+t ) = t 2 − 2 2 t + 2 lim ⁡ t → 0 f ( x + t ) − f ( x ) t = t 2 − 2 2 t t = − 2 2 函数y = x_{1}^{2} + x_{2}^{2} \quad 在点(1,1)处:f(\textbf{x})=2 \\ 将方向向量单位化:(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}),则\lim_{t\to0}\vec{t} = (-\frac{1}{\sqrt{2}}t, -\frac{1}{\sqrt{2}}t) : \\ 在点(1-\frac{1}{\sqrt{2}}t,1-\frac{1}{\sqrt{2}}t)处:f(\textbf{x+t}) = t^{2} - 2\sqrt{2}t + 2 \\ \lim_{t \to 0} \frac{f(\textbf{x}+\textbf{t}) - f(\textbf{x} )}{t} = \frac{t^{2}-2\sqrt{2}t}{t} = -2\sqrt{2} 函数y=x12+x22在点(1,1):f(x)=2将方向向量单位化:(2 1,2 1),t0limt =(2 1t,2 1t):在点(12 1t,12 1t):f(x+t)=t222 t+2t0limtf(x+t)f(x)=tt222 t=22

  2. 偏导数(偏导函数)

    求上述函数对于 x 1 x_{1} x1的偏导(函)数:

    根据定义:
    f ′ ( x 1 ) = ∂ y ∂ x 1 = 2 x 1 {f}'(x_{1}) = \frac{\partial y}{\partial x_{1}} = 2x_{1} f(x1)=x1y=2x1

  3. 梯度

​ 求原函数在点 ( 1 , 1 ) (1,1) (1,1) 处的梯度:

​ 根据定义:

▽ f = ( f ′ ( x 1 ) , f ′ ( x 2 ) , ⋯   , f ′ ( x n ) ) = ( ∂ y ∂ x 1 , ∂ y ∂ x 2 , ⋯   , ∂ y ∂ x n ) \begin{align*} \bigtriangledown f &= (f'(x_{1}), f'(x_{2}), \cdots, f'(x_{n})) \\ & = (\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \cdots, \frac{\partial y}{\partial x_{n}} ) \end{align*} f=(f(x1),f(x2),,f(xn))=(x1y,x2y,,xny)

​ 代入数据得:

▽ f = ( f ′ ( x 1 ) , f ′ ( x 2 ) ) = ( ∂ y ∂ x 1 , ∂ y ∂ x 2 ) = ( 2 x 1 , 2 x 2 ) = ( 2 , 2 ) \begin{align*} \bigtriangledown f &= (f'(x_{1}), f'(x_{2})) \\ & = (\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}) \\ & = (2x_{1}, 2x_{2}) \\ & = (2,2) \end{align*} f=(f(x1),f(x2))=(x1y,x2y)=(2x1,2x2)=(2,2)

2.标量形式的链式法则

这个是本科工科数学一元分析学的重点,此处不用多做证明,只简单地记录一下:

若 y = f ( u ) , u = g ( x ) ,其中 y , u , x 均为标量,则 : ∂ y ∂ x = ∂ y ∂ u ⋅ ∂ u ∂ x 若y=f(u), u=g(x),其中y,u,x均为标量,则:\\ \frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \cdot \frac{\partial u}{\partial x} y=f(u),u=g(x),其中y,u,x均为标量,则:xy=uyxu

拓展到向量

y = f ( u ) , u = g ( x ⃗ ) y=f(u), u=g(\vec{x}) y=f(u),u=g(x ), 其中 x ⃗ = ( x 1 , x 2 , ⋯   , x n ) \vec{x} = (x_{1},x_{2},\cdots,x_{n}) x =(x1,x2,,xn) , y和u均为标量

则有:

∂ y ∂ x = ∂ y ∂ u ⋅ ∂ u ∂ x ( 1 , n ) = 1 ⋅ ( 1 , n ) \frac{\partial y}{\partial \textbf{x}} = \frac{\partial y}{\partial u} \cdot \frac{\partial u}{\partial \textbf{x}} \\ (1,n) = 1\cdot(1,n) xy=uyxu(1,n)=1(1,n)

更具体的展开:

∂ y ∂ x = ( ∂ y ∂ x 1 , ∂ y ∂ x 2 , ⋯   , ∂ y ∂ x n ) = ( ∂ y ∂ u ⋅ ∂ u ∂ x 1 , ∂ y ∂ u ⋅ ∂ u ∂ x 2 , ⋯   , ∂ y ∂ u ⋅ ∂ u ∂ x n ) = ( ∂ y ∂ u ) ⋅ ( ∂ u ∂ x 1 , ∂ u ∂ x 2 , ⋯   , ∂ u ∂ x n ) \begin{align*} \frac{\partial y}{\partial \textbf{x}} &= ( \frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \cdots, \frac{\partial y}{\partial x_{n}}) \\ &= ( \frac{\partial y}{\partial u}\cdot\frac{\partial u}{\partial x_{1}}, \frac{\partial y}{\partial u}\cdot\frac{\partial u}{\partial x_{2}}, \cdots, \frac{\partial y}{\partial u}\cdot\frac{\partial u}{\partial x_{n}}) \\ &= (\frac{\partial y}{\partial u}) \cdot ( \frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \cdots, \frac{\partial u}{\partial x_{n}}) \end{align*} xy=(x1y,x2y,,xny)=(uyx1u,uyx2u,,uyxnu)=(uy)(x1u,x2u,,xnu)

这是显然的。

3.矩阵形式的链式法则

前面提到的例子全部都只涉及到对标量多元函数求偏导数,这是本科的工科数学中就很熟悉的内容。下面介绍的矩阵形式的链式法则均涉及到向量多元函数的偏导数。对向量多元函数求梯度得到的是一个矩阵。

仅中间变量是向量

y = f ( u ⃗ ) , u ⃗ = g ( x ⃗ ) y=f(\vec{u}), \vec{u}=g(\vec{x}) y=f(u ),u =g(x ), 其中 u ⃗ = ( u 1 , u 2 , ⋯   , u k ) \vec{u} = (u_{1},u_{2},\cdots,u_{k}) u =(u1,u2,,uk) , x ⃗ = ( x 1 , x 2 , ⋯   , x n ) \vec{x} = (x_{1},x_{2},\cdots,x_{n}) x =(x1,x2,,xn) , y为标量

链式法则的具体展开:

∂ y ∂ x = ( ∂ y ∂ x 1 , ∂ y ∂ x 2 , ⋯   , ∂ y ∂ x n ) = ( ∂ y ∂ u ⋅ ∂ u ∂ x 1 , ∂ y ∂ u ⋅ ∂ u ∂ x 2 , ⋯   , ∂ y ∂ u ⋅ ∂ u ∂ x n ) = ( ∂ y ∂ u ) ⋅ ( ∂ u ∂ x 1 , ∂ u ∂ x 2 , ⋯   , ∂ u ∂ x n ) = ( ∂ y ∂ u 1 , ∂ y ∂ u 2 , ⋯   , ∂ y ∂ u k ) ⋅ [ ∂ u 1 ∂ x ∂ u 2 ∂ x ⋯ ∂ u k ∂ x ] = ( ∂ y ∂ u 1 , ∂ y ∂ u 2 , ⋯   , ∂ y ∂ u k ) ⋅ [ ∂ u 1 ∂ x 1 ∂ u 1 ∂ x 2 ⋯ ∂ u 1 ∂ x n ∂ u 2 ∂ x 1 ∂ u 2 ∂ x 2 ⋯ ∂ u 2 ∂ x n ⋯ ⋯ ⋯ ⋯ ∂ u k ∂ x 1 ∂ u k ∂ x 2 ⋯ ∂ u k ∂ x n ] \begin{align*} \frac{\partial y}{\partial \textbf{x}} &= ( \frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \cdots, \frac{\partial y}{\partial x_{n}}) \\ &= ( \frac{\partial y}{\partial \textbf{u}}\cdot\frac{\partial \textbf{u}}{\partial x_{1}}, \frac{\partial y}{\partial \textbf{u}}\cdot\frac{\partial \textbf{u}}{\partial x_{2}}, \cdots, \frac{\partial y}{\partial \textbf{u}}\cdot\frac{\partial \textbf{u}}{\partial x_{n}}) \\ &= (\frac{\partial y}{\partial \textbf{u}}) \cdot ( \frac{\partial \textbf{u}}{\partial x_{1}}, \frac{\partial \textbf{u}}{\partial x_{2}}, \cdots, \frac{\partial \textbf{u}}{\partial x_{n}}) \\ &= (\frac{\partial {y}}{\partial u_{1}}, \frac{\partial {y}}{\partial u_{2}}, \cdots, \frac{\partial {y}}{\partial u_{k}}) \cdot \begin{bmatrix} \frac{\partial u_{1}}{\partial \textbf{x}} \\ \frac{\partial u_{2}}{\partial \textbf{x}}\\ \cdots \\ \frac{\partial u_{k}}{\partial \textbf{x}} \end{bmatrix} \\ &= (\frac{\partial {y}}{\partial u_{1}}, \frac{\partial {y}}{\partial u_{2}}, \cdots, \frac{\partial {y}}{\partial u_{k}}) \cdot \begin{bmatrix} \frac{\partial u_{1}}{\partial x_{1}}& \frac{\partial u_{1}}{\partial x_{2}}& \cdots & \frac{\partial u_{1}}{\partial x_{n}}\\ \frac{\partial u_{2}}{\partial x_{1}}& \frac{\partial u_{2}}{\partial x_{2}}& \cdots & \frac{\partial u_{2}}{\partial x_{n}} \\ \cdots &\cdots & \cdots & \cdots \\ \frac{\partial u_{k}}{\partial x_{1}}& \frac{\partial u_{k}}{\partial x_{2}}& \cdots & \frac{\partial u_{k}}{\partial x_{n}} \end{bmatrix} \end{align*} xy=(x1y,x2y,,xny)=(uyx1u,uyx2u,,uyxnu)=(uy)(x1u,x2u,,xnu)=(u1y,u2y,,uky) xu1xu2xuk =(u1y,u2y,,uky) x1u1x1u2x1ukx2u1x2u2x2ukxnu1xnu2xnuk

即:

∂ y ∂ x = ∂ y ∂ u ⋅ ∂ u ∂ x ( 1 , n ) = ( 1 , k ) ⋅ ( k , n ) \frac{\partial y}{\partial \textbf{x}} = \frac{\partial y}{\partial \textbf{u}} \cdot \frac{\partial \textbf{u}}{\partial \textbf{x}} \\ (1,n) = (1,k)\cdot(k,n) xy=uyxu(1,n)=(1,k)(k,n)

所有变量均为向量

y ⃗ = f ( u ⃗ ) , u ⃗ = g ( x ⃗ ) \vec{y}=f(\vec{u}), \vec{u}=g(\vec{x}) y =f(u ),u =g(x ), 其中 y ⃗ = ( y 1 , y 2 , ⋯   , y m ) \vec{y} = (y_{1},y_{2},\cdots,y_{m}) y =(y1,y2,,ym) , u ⃗ = ( u 1 , u 2 , ⋯   , u k ) \vec{u} = (u_{1},u_{2},\cdots,u_{k}) u =(u1,u2,,uk) , x ⃗ = ( x 1 , x 2 , ⋯   , x n ) \vec{x} = (x_{1},x_{2},\cdots,x_{n}) x =(x1,x2,,xn)

链式法则的具体展开:

∂ y ∂ x = ( ∂ y ∂ x 1 , ∂ y ∂ x 2 , ⋯   , ∂ y ∂ x n ) = ( ∂ y ∂ u ⋅ ∂ u ∂ x 1 , ∂ y ∂ u ⋅ ∂ u ∂ x 2 , ⋯   , ∂ y ∂ u ⋅ ∂ u ∂ x n ) = ( ∂ y ∂ u ) ⋅ ( ∂ u ∂ x 1 , ∂ u ∂ x 2 , ⋯   , ∂ u ∂ x n ) = [ ∂ y 1 ∂ u 1 ∂ y 1 ∂ u 2 ⋯ ∂ y 1 ∂ u k ∂ y 2 ∂ u 1 ∂ y 2 ∂ u 2 ⋯ ∂ y 2 ∂ u k ⋯ ⋯ ⋯ ⋯ ∂ y m ∂ u 1 ∂ y m ∂ u 2 ⋯ ∂ y m ∂ u k ] ⋅ [ ∂ u 1 ∂ x 1 ∂ u 1 ∂ x 2 ⋯ ∂ u 1 ∂ x n ∂ u 2 ∂ x 1 ∂ u 2 ∂ x 2 ⋯ ∂ u 2 ∂ x n ⋯ ⋯ ⋯ ⋯ ∂ u k ∂ x 1 ∂ u k ∂ x 2 ⋯ ∂ u k ∂ x n ] \begin{align*} \frac{\partial \textbf{y}}{\partial \textbf{x}} &= ( \frac{\partial \textbf{y}}{\partial x_{1}}, \frac{\partial \textbf{y}}{\partial x_{2}}, \cdots, \frac{\partial \textbf{y}}{\partial x_{n}}) \\ &= ( \frac{\partial \textbf{y}}{\partial \textbf{u}}\cdot\frac{\partial \textbf{u}}{\partial x_{1}}, \frac{\partial \textbf{y}}{\partial \textbf{u}}\cdot\frac{\partial \textbf{u}}{\partial x_{2}}, \cdots, \frac{\partial \textbf{y}}{\partial \textbf{u}}\cdot\frac{\partial \textbf{u}}{\partial x_{n}}) \\ &= (\frac{\partial \textbf{y}}{\partial \textbf{u}}) \cdot ( \frac{\partial \textbf{u}}{\partial x_{1}}, \frac{\partial \textbf{u}}{\partial x_{2}}, \cdots, \frac{\partial \textbf{u}}{\partial x_{n}}) \\ &= \begin{bmatrix} \frac{\partial y_{1}}{\partial u_{1}}& \frac{\partial y_{1}}{\partial u_{2}}& \cdots & \frac{\partial y_{1}}{\partial u_{k}}\\ \frac{\partial y_{2}}{\partial u_{1}}& \frac{\partial y_{2}}{\partial u_{2}}& \cdots & \frac{\partial y_{2}}{\partial u_{k}} \\ \cdots &\cdots & \cdots & \cdots \\ \frac{\partial y_{m}}{\partial u_{1}}& \frac{\partial y_{m}}{\partial u_{2}}& \cdots & \frac{\partial y_{m}}{\partial u_{k}} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial u_{1}}{\partial x_{1}}& \frac{\partial u_{1}}{\partial x_{2}}& \cdots & \frac{\partial u_{1}}{\partial x_{n}}\\ \frac{\partial u_{2}}{\partial x_{1}}& \frac{\partial u_{2}}{\partial x_{2}}& \cdots & \frac{\partial u_{2}}{\partial x_{n}} \\ \cdots &\cdots & \cdots & \cdots \\ \frac{\partial u_{k}}{\partial x_{1}}& \frac{\partial u_{k}}{\partial x_{2}}& \cdots & \frac{\partial u_{k}}{\partial x_{n}} \end{bmatrix} \end{align*} xy=(x1y,x2y,,xny)=(uyx1u,uyx2u,,uyxnu)=(uy)(x1u,x2u,,xnu)= u1y1u1y2u1ymu2y1u2y2u2ymuky1uky2ukym x1u1x1u2x1ukx2u1x2u2x2ukxnu1xnu2xnuk

即:

∂ y ∂ x = ∂ y ∂ u ⋅ ∂ u ∂ x ( m , n ) = ( m , k ) ⋅ ( k , n ) \frac{\partial \textbf{y}}{\partial \textbf{x}} = \frac{\partial \textbf{y}}{\partial \textbf{u}} \cdot \frac{\partial \textbf{u}}{\partial \textbf{x}} \\ (m,n) = (m,k)\cdot(k,n) xy=uyxu(m,n)=(m,k)(k,n)

如果将此时的链式法则画出计算图,可以清晰地看出,向量函数 y \textbf{y} y 对 向量 x \textbf{x} x 求偏导,实际上就是遍历了从y到x的所有依赖关系。这就是上面这个矩阵相乘的本质。 ]

  • 8
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值