个人笔记:
1:一元泰勒展开公式
举例:f(x) = 3x² + 2x + 5 在x=0或x=1处的泰勒展开
当x=0时:
当x=1时:
不论Xk等于多少,最后展开得公式相加都是等于f(x) = 3x² + 2x + 5
2:二元泰勒展开公式
x 和 y在k处的泰勒展开:
简化:
简化:
①
f
x
x
′
′
f''_{xx}
fxx′′是对 x 求两次导。
②
f
x
y
′
′
f''_{xy}
fxy′′是先对x求一次导,然后再对y求一次导。
③
f
y
x
′
′
f''_{yx}
fyx′′是先对y求一次导,然后再对x求一次导。
(其中③ = ②)
④
f
y
y
′
′
f''_{yy}
fyy′′是对 y 求两次导。
3:二元函数的黑塞矩阵
二元函数点
f
(
x
1
,
x
2
)
f(x_1,x_2)
f(x1,x2) 在
X
(
k
)
(
x
1
(
k
)
,
x
2
(
k
)
)
X^{(k)}(x_1^{(k)},x_2^{(k)})
X(k)(x1(k),x2(k))处的泰勒展开式为:
其中 Δ x 1 Δ x_1 Δx1 = x 1 x_1 x1 − x 1 ( k ) x_1^{(k)} x1(k) , Δ x 2 Δ x_2 Δx2 = x 2 x_2 x2 − x 2 ( k ) x_2^{(k)} x2(k)
即:
(1):其中
它是 f ( X ) f(X) f(X)在 X ( k ) X^{(k)} X(k)点处的梯度。
(2):
G
(
X
(
k
)
)
G(X^{(k)})
G(X(k))是
f
(
x
1
,
x
2
)
f(x_1,x_2)
f(x1,x2)在
X
(
k
)
X^{(k)}
X(k)处的黑塞矩阵。它是由函数
f
(
x
1
,
x
2
)
f(x_1,x_2)
f(x1,x2)在
X
(
k
)
X^{(k)}
X(k)处的二阶偏导数所组成的方阵。
4:多元函数的黑塞矩阵
1:多元函数
f
(
x
1
,
x
2
,
.
.
.
,
x
n
)
f(x_1,x_2,...,x_n)
f(x1,x2,...,xn)在点
x
(
k
)
x^{(k)}
x(k)处的泰勒展开式为:
把泰勒(Taylor)展开式写成矩阵的形式:
其中:
它是
f
(
X
)
f(X)
f(X)在
X
(
k
)
X^{(k)}
X(k)点处的梯度。
(2):
G
(
X
(
k
)
)
G(X^{(k)})
G(X(k))是
f
(
x
1
,
x
2
,
.
.
.
,
x
n
)
f(x_1,x_2,...,x_n)
f(x1,x2,...,xn)在
X
(
k
)
X^{(k)}
X(k)处的黑塞矩阵。它是由函数
f
(
x
1
,
x
2
,
.
.
.
,
x
n
)
f(x_1,x_2,...,x_n)
f(x1,x2,...,xn)在
X
(
k
)
X^{(k)}
X(k)处的二阶偏导数所组成
n
∗
n
n*n
n∗n阶方阵。
2:
举例:
5:多元函数的雅可比矩阵(Jacobian矩阵)
1.概述
设
f
f
f:
R
n
R^n
Rn →
R
m
R^m
Rm是一个函数,它的输入是向量
x
∈
R
n
x ∈ R^n
x∈Rn,输出是向量
y
=
f
(
x
)
∈
R
m
y = f(x)∈ R^m
y=f(x)∈Rm,并且
m
≥
n
m≥n
m≥n是一个从欧式
n
n
n维空间转换到欧式
m
m
m维空间的函数,这个函数由
m
m
m个实函数组成:
f
1
(
x
1
,
…
,
x
n
)
f_1(x_1,…,x_n)
f1(x1,…,xn),…,
f
m
(
x
1
,
…
,
x
n
)
f_m(x_1,…,x_n)
fm(x1,…,xn)这些函数的偏导数(如果存在)可以组成一个
m
∗
n
m∗n
m∗n的矩阵, 这就是所谓的Jacobian矩阵:
那么雅可比矩阵是一个
m
×
n
m×n
m×n 矩阵,通常被定义为
2:举例
来看一个实际的数据拟合过程,输入:
自变量:
x
=
x =
x={
1
,
2
,
4
,
5
,
8
1,2,4,5,8
1,2,4,5,8 }
因变量:
y
=
y =
y={
3.2939
,
4.2699
,
7.1749
,
9.3008
,
20.259
3.2939,4.2699,7.1749,9.3008,20.259
3.2939,4.2699,7.1749,9.3008,20.259 }
目标:用函数
f
=
p
1
∗
e
p
2
∗
x
−
y
f=p_1 ∗ e^{p_2∗x}−y
f=p1∗ep2∗x−y 进行拟合,这里自变量
x
x
x,因变量
y
y
y,参数
p
1
p_1
p1和
p
2
p_2
p2,对参数
p
1
p_1
p1和
p
2
p_2
p2进行求导:
e
p
∗
x
e^{p*x}
ep∗x对
p
p
p进行求导得:
x
∗
e
p
∗
x
x*e^{p*x}
x∗ep∗x
雅可比矩阵描述:
Jacobian矩阵 =
[ exp(p2), p1*exp(p2)]
[ exp(2*p2), 2*p1*exp(2*p2)]
[ exp(4*p2), 4*p1*exp(4*p2)]
[ exp(5*p2), 5*p1*exp(5*p2)]
[ exp(8*p2), 8*p1*exp(8*p2)]
即: