【信号处理】Python实现BPSK、QPSK、8PSK、8QAM、16QAM、64QAM的调制和解调

1 引言

本文不涉及原理讲解,只提供实现方法。需要借助Commpy开源包去实现通信中的各种处理。

安装方法

方法一
pip install scikit-commpy
方法二
git clone https://github.com/veeresht/CommPy.git
cd CommPy
python setup.py install

2 实现

2.1 调制

import commpy as cpy
bits = np.random.binomial(n=1,p=0.5,size=(128))
Modulation_type ="BPSK"
if Modulation_type=="BPSK":
	bpsk = cpy.PSKModem(2)
  symbol = bpsk.modulate(bits)
  return symbol
elif Modulation_type=="QPSK":
	qpsk = cpy.PSKModem(4)
  symbol = qpsk.modulate(bits)
  return symbol
elif Modulation_type=="8PSK":
	psk8 = cpy.PSKModem(8)
  symbol = psk8.modulate(bits)
  return symbol
elif Modulation_type=="16QAM":
	qam16 = cpy.QAMModem(16)
  symbol = qam16.modulate(bits)
  return symbol
elif Modulation_type=="64QAM":
	qam64 = cpy.QAMModem(64)
  symbol = qam64.modulate(bits)
  return symbol

注意8QAM,不能用Commpy实现,实现如下

import numpy as np
import matplotlib.pyplot as plt
import math

def split_by_len(str, length):
    return [str[i:i+length] for i in range(0, len(str), length)]

def generate_8qam(signal):
    SAMP = 1
    fc = 4
    qam = []
    t = np.arange(0, SAMP)
    wave = []
    for i in range(8):
        if i % 2 == 0:
            amp = 0.5
        else:
            amp = 1
        wave.append(amp * np.exp(1j * (fc * np.pi * t/SAMP + math.floor(i/2) * np.pi/2)))

    s_bits = split_by_len(signal, 3)
    for s in s_bits:
        qam.extend(wave[int('0b' + s, 0)])
    qam = np.array(qam)
    return qam
bits = np.random.binomial(n=1,p=0.5,size=(128,))
if Modulation_type=="64QAM":
	signal = ''
	for i in range(bits.shape[0]):
	    signal = signal+str(bits[i])
	symbol = generate_8qam(signal)
  	return symbol

2.2 解调

# 和调制一样,需要先定义调制方法的类,再去调用解调的函数。
import commpy as cpy
bits = np.random.binomial(n=1,p=0.5,size=(128))
# Modem : QPSK
modem = mod.QAMModem(4)
signal = modem.modulate(bits)
modem.demodulate(signal, 'hard')

3 完整编码和解码的例子

来源Commpy 例子

# Authors: CommPy contributors
# License: BSD 3-Clause

from __future__ import division, print_function  # Python 2 compatibility

import math

import matplotlib.pyplot as plt
import numpy as np

import commpy.channelcoding.convcode as cc
import commpy.channels as chan
import commpy.links as lk
import commpy.modulation as mod
import commpy.utilities as util

# =============================================================================
# Convolutional Code 1: G(D) = [1+D^2, 1+D+D^2]
# Standard code with rate 1/2
# =============================================================================

# Number of delay elements in the convolutional encoder
memory = np.array(2, ndmin=1)

# Generator matrix
g_matrix = np.array((0o5, 0o7), ndmin=2)

# Create trellis data structure
trellis1 = cc.Trellis(memory, g_matrix)

# =============================================================================
# Convolutional Code 1: G(D) = [1+D^2, 1+D^2+D^3]
# Standard code with rate 1/2
# =============================================================================

# Number of delay elements in the convolutional encoder
memory = np.array(3, ndmin=1)

# Generator matrix (1+D^2+D^3 <-> 13 or 0o15)
g_matrix = np.array((0o5, 0o15), ndmin=2)

# Create trellis data structure
trellis2 = cc.Trellis(memory, g_matrix)

# =============================================================================
# Convolutional Code 2: G(D) = [[1, 0, 0], [0, 1, 1+D]]; F(D) = [[D, D], [1+D, 1]]
# RSC with rate 2/3
# =============================================================================

# Number of delay elements in the convolutional encoder
memory = np.array((1, 1))

# Generator matrix & feedback matrix
g_matrix = np.array(((1, 0, 0), (0, 1, 3)))
feedback = np.array(((2, 2), (3, 1)))

# Create trellis data structure
trellis3 = cc.Trellis(memory, g_matrix, feedback, 'rsc')

# =============================================================================
# Basic example using homemade counting and hard decoding
# =============================================================================

# Traceback depth of the decoder
tb_depth = None  # Default value is 5 times the number or memories

for trellis in (trellis1, trellis2, trellis3):
    for i in range(10):
        # Generate random message bits to be encoded
        message_bits = np.random.randint(0, 2, 1000)

        # Encode message bits
        coded_bits = cc.conv_encode(message_bits, trellis)

        # Introduce bit errors (channel)
        coded_bits[np.random.randint(0, 1000)] = 0
        coded_bits[np.random.randint(0, 1000)] = 0
        coded_bits[np.random.randint(0, 1000)] = 1
        coded_bits[np.random.randint(0, 1000)] = 1

        # Decode the received bits
        decoded_bits = cc.viterbi_decode(coded_bits.astype(float), trellis, tb_depth)

        num_bit_errors = util.hamming_dist(message_bits, decoded_bits[:len(message_bits)])

        if num_bit_errors != 0:
            print(num_bit_errors, "Bit Errors found!")
        elif i == 9:
            print("No Bit Errors :)")

# ==================================================================================================
# Complete example using Commpy features and compare hard and soft demodulation. Example with code 1
# ==================================================================================================

# Modem : QPSK
modem = mod.QAMModem(4)

# AWGN channel
channels = chan.SISOFlatChannel(None, (1 + 0j, 0j))

# SNR range to test
SNRs = np.arange(0, 6) + 10 * math.log10(modem.num_bits_symbol)


# Modulation function
def modulate(bits):
    return modem.modulate(cc.conv_encode(bits, trellis1, 'cont'))


# Receiver function (no process required as there are no fading)
def receiver_hard(y, h, constellation, noise_var):
    return modem.demodulate(y, 'hard')


# Receiver function (no process required as there are no fading)
def receiver_soft(y, h, constellation, noise_var):
    return modem.demodulate(y, 'soft', noise_var)


# Decoder function
def decoder_hard(msg):
    return cc.viterbi_decode(msg, trellis1)


# Decoder function
def decoder_soft(msg):
    return cc.viterbi_decode(msg, trellis1, decoding_type='soft')


# Build model from parameters
code_rate = trellis1.k / trellis1.n
model_hard = lk.LinkModel(modulate, channels, receiver_hard,
                          modem.num_bits_symbol, modem.constellation, modem.Es,
                          decoder_hard, code_rate)
model_soft = lk.LinkModel(modulate, channels, receiver_soft,
                          modem.num_bits_symbol, modem.constellation, modem.Es,
                          decoder_soft, code_rate)

# Test
BERs_hard = model_hard.link_performance(SNRs, 10000, 600, 5000, code_rate)
BERs_soft = model_soft.link_performance(SNRs, 10000, 600, 5000, code_rate)
plt.semilogy(SNRs, BERs_hard, 'o-', SNRs, BERs_soft, 'o-')
plt.grid()
plt.xlabel('Signal to Noise Ration (dB)')
plt.ylabel('Bit Error Rate')
plt.legend(('Hard demodulation', 'Soft demodulation'))
plt.show()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值