optuna-dashboard自动超参数优化和可视化利器

介绍

Optuna库是机器学习中提供自动化超参数优化的库,它和很多知名的机器学习库
(如sklearn,keras,tensorflow,xgboost,lightgbm,pytorch等)是兼容的。
dashboard是其中一个提供结果画图展示和可交互操作的功能,在当前的版本中已经被独立出来成为一个模块,下面将用一个简单的示例来展现它的效果。

示例

在使用之前,如果没有安装,可以使用以下命令进行安装。

conda install -c conda-forge optuna
或者
pip install optuna

安装好optuna库后,再安装optuna-dashboard。

conda install -c conda-forge optuna-dashboard
或者
pip install optuna-dashboard

安装完毕后先用optuna创建好我们要用的study,将它保存在数据库中,然后用dashboard导入即可,具体如下:

import optuna
import sklearn
def objective(trial):
    Classifier_name = trial.suggest_categorical('classifier', ['GradientBoosting', 'RandomForest'])
    if Classifier_nam
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值