1.机器学习基础
1.1 模型评估与模型参数选择
训练集上的平均误差被称为训练误差
测试集上的误差成为泛化误差,泛化误差是衡量一个模型泛化能力的重要标准
之所以不能把训练误差作为模型参数选择的标准,是应为训练集可能存在以下问题:
- 训练集样本太少,缺乏代表性
- 训练集中本身存在错误的样本,即噪声
如果片面地追求训练误差的最小化,就会导致模型参数复杂第增加,使得模型过拟合
防止出现过拟合的问题,通常可以采取的方法有:使用验证集调参和对损失函数进行正则化两种方法
2. PyTorch深度学习基础
2.2 Tensor的索引,切片,拼接,拆分,Reduction操作
可以看以下链接Tensor的索引,切片,拼接,拆分,Reduction操作
2.2.1 整数索引
在进行整数索引的时候,例如以下例子,获取(0,2)和(1,2)两个位置上的数据组成一个一维向量