PyTorch深度学习实战

1.机器学习基础

1.1 模型评估与模型参数选择

训练集上的平均误差被称为训练误差
测试集上的误差成为泛化误差,泛化误差是衡量一个模型泛化能力的重要标准
之所以不能把训练误差作为模型参数选择的标准,是应为训练集可能存在以下问题:

  1. 训练集样本太少,缺乏代表性
  2. 训练集中本身存在错误的样本,即噪声
    如果片面地追求训练误差的最小化,就会导致模型参数复杂第增加,使得模型过拟合
    防止出现过拟合的问题,通常可以采取的方法有:使用验证集调参和对损失函数进行正则化两种方法

2. PyTorch深度学习基础

2.2 Tensor的索引,切片,拼接,拆分,Reduction操作

可以看以下链接Tensor的索引,切片,拼接,拆分,Reduction操作

2.2.1 整数索引

在进行整数索引的时候,例如以下例子,获取(0,2)和(1,2)两个位置上的数据组成一个一维向量
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值