Partial Dependence Plots 从原理到实战

Partial Dependence Plots (PDP) 用于揭示特征与目标变量之间的关系,通过绘制PDP图来展示。以GradientBoostingRegressor模型为例,PDP计算某特征如X1对模型预测值的影响,即所有样本中,将X1替换后的模型预测平均值。实例展示了房价数据中,距离和建筑面积如何影响价格。PDP有助于理解单个或两个特征对目标的影响,但应注意其假设特征间不相关,并可能隐藏多个特征的综合效应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Partial Dependence:用来解释某个特征和目标值y的关系,一般是通过画出Partial Dependence Plots(PDP)来体现。

PDP是依赖于模型本身,需要先训练模型(比如训练一个GradientBoostingRegressor模型)。假设我们想研究y和特征 X 1 X_{1} X1的关系,那么PDP就是一个关于 X 1 X_{1} X1和模型预测值的函数。先拟合了一个GradientBoostingRegressor模型my_model,然后用 X i k X_{i}^{k} Xik表示训练集中第k个样本的第i个特征,那么PDP的函数就是
f ( X 1 ) = 1 n ∑ k = 1 n m y m o d e l (

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值