Partial Dependence:用来解释某个特征和目标值y的关系,一般是通过画出Partial Dependence Plots(PDP)来体现。
PDP是依赖于模型本身,需要先训练模型(比如训练一个GradientBoostingRegressor模型)。假设我们想研究y和特征 X 1 X_{1} X1的关系,那么PDP就是一个关于 X 1 X_{1} X1和模型预测值的函数。先拟合了一个GradientBoostingRegressor模型my_model,然后用 X i k X_{i}^{k} Xik表示训练集中第k个样本的第i个特征,那么PDP的函数就是
f ( X 1 ) = 1 n ∑ k = 1 n m y m o d e l (