一、向量检索介绍
1.1 多模态信息的典型特点-非结构化
信息可以被划分为两大类:当信息能够用数据或统一的结构加以表示,称之为结构化数据;当信息无法用数字或统一的结构表示,称之为非结构化数据。非结构数据与结构化数据相比较而言,更难让计算机理解。
以搜索为例:需要将非结构化数据→转为结构化→再完成搜索;

1.2 向量检索的定义与应用
1.2.1 什么是向量检索?
将物理世界产生的非结构化数据,转化为结构化的多维向量,用这些向量标识实体和实体间的关系。
再计算向量之间距离,通常情况下,距离越近、相似度越高,召回相似度最高的TOP结果,完成检索。
向量检索其实离我们很近:以图搜图、同款比价、个性化搜索、语义理解……

1.2.2 向量检索典型应用场景
1.图像/视频/语音 多模态检索
图搜购物、同款比价,拍照搜题、图片识别等;
2.NLP 文本检索
标准地址库检索、企业机构名称检索、通过补充向量语义召回,提升搜索效果;
3.搜索推荐广告
相似推荐、个性化搜索等;
4.向量检索几乎能够应用到AI领域的所有场景。

本文介绍了向量检索在非结构化数据处理中的应用,特别是图像和文本搜索。OpenSearch向量检索版提供端到端解决方案,解决自建系统的性能、成本和效果问题。内置模型和高性能引擎实现毫秒级响应,同时通过数据压缩和索引优化降低成本。此外,支持多种检索算法、混合检索和过滤,适用于大规模数据的快速索引构建与实时更新。
最低0.47元/天 解锁文章
2853

被折叠的 条评论
为什么被折叠?



