计算机视觉领域最常用的三个数据集
应用在ImageNet数据集中的各个任务
1、Classification
对于每张图片,模型需要给出5个可能的类别索引,计算的就是Top 5 Error
摘要
网络结构
其中,LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
LRN在当时使用较多,但目前基本是在使用,而是使用Batch Normalization
下面说明一下输入、输出尺寸与卷积核的大小,步长,padding的关系
Overlapping Pooling
解决Overfitting
1、数据扩张
在256X256的原始图片中提取224X224的patch,同时对图片进行水平的反转,这样就可以将数据扩张到32X32X2=2048倍
2、Dropout(随机失活)
实验结果即分析
1、
两个GPU分工学习,一个学习与颜色无关,另一个学习与颜色相关
总结
可以作为引用应用到自己的论文中去