AlexNet Paper阅读笔记

计算机视觉领域最常用的三个数据集

在这里插入图片描述

应用在ImageNet数据集中的各个任务

1、Classification
对于每张图片,模型需要给出5个可能的类别索引,计算的就是Top 5 Error

摘要

在这里插入图片描述

网络结构

在这里插入图片描述
其中,LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。

LRN在当时使用较多,但目前基本是在使用,而是使用Batch Normalization

在这里插入图片描述

下面说明一下输入、输出尺寸与卷积核的大小,步长,padding的关系
在这里插入图片描述

Overlapping Pooling
解决Overfitting
1、数据扩张

在256X256的原始图片中提取224X224的patch,同时对图片进行水平的反转,这样就可以将数据扩张到32X32X2=2048倍

2、Dropout(随机失活)

在这里插入图片描述

实验结果即分析

1、
在这里插入图片描述
两个GPU分工学习,一个学习与颜色无关,另一个学习与颜色相关

总结

可以作为引用应用到自己的论文中去
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值