详解相机模型:矩阵变化+代码解析

0. 写在前面

在3dmm中,重要的一步是对3d模型进行拍照。

这里引出问题:怎么给3d模型拍照?

下面解决这个拍照问题。

1. 相机模型

本节目标:

  1. 理解针孔相机的模型,内参与径向畸变参数。
  2. 理解一个空间点是如何投影到相机成像。

我们知道:
一张照片(二维):由多个像素组成,每个像素记录了色彩或亮度的信息。
一个物体(三维世界):物体反射或发出的光线,通过相机光心后,投影到相机的成像平面。

相机将三维世界中的坐标点(单位米)映射到二维图像平面(单位像素)的过程能够用一个几何模型进行描述。

这个模型有很多种,其中最简单的为针孔模型。事实上,真实的相机镜头是透镜,会使得光线投影到成像平面的过程会产生畸变。

那么总结一下,所谓相机模型实际是是:针孔相机模型+畸变模型。

在3dmm中我们暂不考虑畸变模型。

1.1 针孔相机模型 (Pinhole camera)

小孔成像.png

在小孔成像过程中,小孔模型将三维世界中的蜡烛投影到一个二维成像平面。

首先我们要先认识一下4种坐标:

  1. 世界坐标 (World reference system)
  2. 相机坐标 (camera coordinate)
  3. 归一化相机坐标 (normalized coordinate)
  4. 像素坐标 (pixel coordinate)

image.png

我们来品一下这张图><。

  1. 世界坐标 是我们客观存在的世界,它有自己的固有坐标。在这里我们定义三维空间的三个方向分别为: x w , y w , z w x_w, y_w, z_w xw,yw,zw
    例子
    例子1: 长城。它就存在在那里,有它自己的坐标。
    例子2: 3d模型。3d模型在计算机中是以点的坐标来存储的,这个坐标代表点在 x w , y w , z w x_w, y_w, z_w xw,yw,zw三个方向上的大小,比如一个点 B B B,它的存储形式是 ( 12 , 15 , 18 ) (12, 15, 18) (12,15,18)。这样的点有 n n n个,在3dmm中实际上有53215个这样的三维点,这些点组成了基本的人脸3d模型。

  2. 相机坐标 是从相机的角度去看世界,相机本身是这个坐标系的原点。
    在这里我们定义在这个角度的三维空间的三个方向分别为: x c , y c , z c x_c, y_c, z_c xc,yc,zc
    例子
    例子1: 小时候我总觉得门前的山特别高,后来长大之后回到老地方,发现这个山也没那么高嘛。山变了吗?山没变,是我看山的角度变了。
    例子2: 正所谓【横看成岭侧成峰】,说的也是这回事。

  3. 归一化相机坐标 物理成像平面。在这里我们可以定义三维空间的三个方向分别为: x n , y n , z n x_n, y_n, z_n xn,yn,zn
    原点 O ˊ \acute O Oˊ是相机坐标的 z c z_c zc轴与物理成像平面的交点。一般取 z n z_n zn的方向与 z c z_c zc方向相同,将点 P P P在针孔相机模型到物理成像平面的距离统一为 z n = f z_n = f zn=f,其中 f f f为焦距,这就相当于对相机坐标进行归一化。

  4. 像素坐标 水平方向是U,垂直方向是V,通过这个平面的,二维的UV坐标系。我们可以定位图象上的任意一个像素。
    image.png

注意 这里的像素坐标的单位是像素,而上述3个坐标系的单位为米。
在这里我们定义二维空间的二个方向分别为: u , v u, v u,v

1.2 计算过程

image.png

================== 计算过程(1) 从世界坐标到相机坐标 ==================

已知我们有一个点 P P P,它的世界坐标(我们常说的坐标)为:
P w = [ x w y w z w ] P_w =\begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} Pw=xwywzw

这个点 P P P,它在相机视角下的坐标为:
P c = [ x c y c z c ] P_c=\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} Pc=xcyczc

我们知道 P w P_w Pw P c P_c Pc是同一点在不同坐标系下的表达方式,那么 P w P_w Pw P c P_c Pc之间是什么关系呢?其实是:

P w P_w Pw 旋 转 变 换 + 平 移 变 换 → \underrightarrow{旋转变换+平移变换} + P c P_c Pc

这里需要引入一下齐次坐标的概念。

齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。

比如从欧式坐标变换到齐次坐标时,即 欧 式 坐 标 → 齐 次 坐 标 欧式坐标 \rightarrow 齐次坐标
( x , y ) = [ x y z ] (x, y) = \begin{bmatrix} x \\ y\\ z\\ \end{bmatrix} (x,y)=xyz ( x , y , z ) = [ x y z 1 ] (x, y, z) = \begin{bmatrix} x \\ y\\ z\\ 1 \\\end{bmatrix} (x,y,z)=xyz1
从齐次坐标变换到欧式坐标时,即 齐 次 坐 标 → 欧 式 坐 标 齐次坐标 \rightarrow 欧式坐标

[ x y w ] = ( x w , y w ) \begin{bmatrix} x \\ y\\ w\\ \end{bmatrix} = (\frac{x}{w}, \frac{y}{w}) xyw=(wx,wy) [ x y z w ] = ( x w , y w , z w ) \begin{bmatrix} x \\ y\\ z\\ w \\ \end{bmatrix} = (\frac{x}{w}, \frac{y}{w},\frac{z}{w}) xyzw=(wx,wy,wz)

接下来回到 P w P_w Pw 旋 转 变 换 + 平 移 变 换 → \underrightarrow{旋转变换+平移变换} + P c P_c Pc

(1)旋转变换

R x ( α ) = [   1 0 0 0 cos ⁡ α − sin ⁡ α 0 sin ⁡ α cos ⁡ α ] R_x(\alpha) = \begin{bmatrix}\ 1 &amp; 0 &amp;0 \\ 0 &amp; \cos \alpha &amp; -\sin \alpha \\ 0 &amp;\sin \alpha &amp;\cos \alpha \\ \end{bmatrix} Rx(α)= 1000cosαsinα0sinαcosα
R y ( β ) = [   cos ⁡ β 0 sin ⁡ β 0 1 0 − sin ⁡ β 0 cos ⁡ β ] R_y(\beta) = \begin{bmatrix}\ \cos \beta&amp; 0 &amp; \sin \beta\\ 0 &amp; 1 &amp; 0 \\ - \sin \beta&amp; 0 &amp; \cos \beta\\ \end{bmatrix} Ry(β)= cosβ0sinβ010sinβ0cosβ
R x ( γ ) = [ cos ⁡ γ − sin ⁡ γ 0 sin ⁡ γ cos ⁡ γ 0 0 0 1 ] R_x(\gamma) = \begin{bmatrix}\cos \gamma &amp; -\sin \gamma &amp; 0\\ \sin \gamma &amp; \cos \gamma &amp; 0 \\ 0 &amp; 0 &amp; 1 \\ \end{bmatrix} Rx(γ)=cosγsinγ0sinγcosγ0001

此时:
R = R x ( α ) R y ( β ) R x ( γ ) R = R_x(\alpha) R_y(\beta) R_x(\gamma) R=Rx(α)Ry(β)Rx(γ)

(2)平移变换
T = [ T x T y T z ] T = \begin{bmatrix} T_x \\ T_y\\ T_z\\ \end{bmatrix} T=TxTyTz

结合(1)(2),那么对于点 P P P(下角标 h _h h表示齐次坐标):
P h c = [ x c y c z c 1 ] = [ R T 0 1 ] 4 × 4 [ x w y w z w 1 ] 4 × 1 = [ R T 0 1 ] 4 × 4 P h w P_{hc} = \begin{bmatrix} x_c \\ y_c\\ z_c\\ 1 \\ \end{bmatrix} = \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} \begin{bmatrix} x_w \\ y_w\\ z_w\\ 1\end{bmatrix} _{4\times1 } = \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} P_{hw} Phc=xcyczc1=[R0T1]4×4xwywzw14×1=[R0T1]4×4Phw

================== 计算过程(2) 从相机坐标到像素坐标 ==================

由图可知:
image.png

△ O O ˊ P ˊ △O \acute O \acute P OOˊPˊ △ O P ˊ P ˊ ˊ △O \acute P\acute {\acute P} OPˊPˊˊ相似,那么对于点 P P P在相机坐标下的表示 P c = [ x c y c z c ] P_c = \begin{bmatrix} x_c \\ y_c\\ z_c \end{bmatrix} Pc=xcyczc 及在归一化相机坐标系里的表现 P n = [ x n y n z n ] P_n = \begin{bmatrix} x_n \\ y_n\\ z_n \end{bmatrix} Pn=xnynzn, ( z n = f z_n = f zn=f):
x n = f x c z c x_n = f \frac{x_c}{z_c} xn=fzcxc y n = f y c z c y_n = f \frac{y_c}{z_c} yn=fzcyc

接下来要从归一化相机坐标系继续变换到像素坐标系,归一化相机坐标系与像素坐标系之间,相差了一个缩放原点的平移

我们设像素坐标在 u u u轴上缩放了 α \alpha α倍,在 v v v轴上缩放了 β \beta β倍。同时,原点平移了 [ c x c y ] \begin{bmatrix} c_x \\ c_y \end{bmatrix} [cxcy] ,那么像素坐标系下的 P u v P_{uv} Puv与归一化相机坐标系下的 P n P_n Pn的关系为:
u = α x n + c x = α f x c z c + c x u = \alpha x_n + c_x = \alpha f \frac{x_c}{z_c} + c_x u=αxn+cx=αfzcxc+cx v = β y n + c y = β f y c z c + c y v = \beta y_n+ c_y =\beta f \frac{y_c}{z_c} + c_y v=βyn+cy=βfzcyc+cy
我们设 α f = f x \alpha f = f_x αf=fx, β f = f y \beta f = f_y βf=fy,得到:
u = f x x c z c + c x u = f_x \frac{x_c}{z_c} + c_x u=fxzcxc+cx v = f y y c z c + c y v = f_y\frac{y_c}{z_c} + c_y v=fyzcyc+cy

上述内容总结一下,用齐次坐标来表示:
P h u v = [ u v 1 ] = [ f x x c z c + c x f y y c z c + c y 1 ] P_{huv} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} {f_x \frac{x_c}{z_c} + c_x} \\ f_y\frac{y_c}{z_c} + c_y \\ 1 \end{bmatrix} Phuv=uv1=fxzcxc+cxfyzcyc+cy1
因为齐次坐标乘以非零常数后表达相同含义:

[ u v 1 ] = [ f x x c z c + c x f y y c z c + c y 1 ] = [ f x x c + c x z c f y y c + c y z c z c ] \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} {f_x \frac{x_c}{z_c} + c_x} \\ f_y\frac{y_c}{z_c} + c_y \\ 1 \end{bmatrix} = \begin{bmatrix} f_x x_c + c_x z_c \\ f_y y_c + c_y z_c\\ z_c \end{bmatrix} uv1=fxzcxc+cxfyzcyc+cy1=fxxc+cxzcfyyc+cyzczc = [ f x 0 c x 0 f y c y 0 0 1 ] [ x c y c z c ] = \begin{bmatrix} f_x &amp; 0 &amp;c_x \\ 0 &amp; f_y &amp; c_y \\ 0 &amp; 0 &amp; 1\end{bmatrix}\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} =fx000fy0cxcy1xcyczc

回忆一下的(1)部分的结果:
P h c = [ x c y c z c 1 ] = [ R T 0 1 ] 4 × 4 [ x w y w z w 1 ] 4 × 1 = [ R T 0 1 ] 4 × 4 P h w P_{hc} = \begin{bmatrix} x_c \\ y_c\\ z_c\\ 1 \\ \end{bmatrix} = \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} \begin{bmatrix} x_w \\ y_w\\ z_w\\ 1\end{bmatrix} _{4\times1 } = \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} P_{hw} Phc=xcyczc1=[R0T1]4×4xwywzw14×1=[R0T1]4×4Phw

这里的 P c h P_{ch} Pch P c P_c Pc齐次坐标,为了将这一部分带入 [ u v 1 ] \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} uv1,
[ u v 1 ] = [ f x x c z c + c x f y y c z c + c y 1 ] \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} {f_x \frac{x_c}{z_c} + c_x} \\ f_y\frac{y_c}{z_c} + c_y \\ 1 \end{bmatrix} uv1=fxzcxc+cxfyzcyc+cy1
= [ f x x c + c x z c f y y c + c y z c z c ] = \begin{bmatrix} f_x x_c + c_x z_c \\ f_y y_c + c_y z_c\\ z_c \end{bmatrix} =fxxc+cxzcfyyc+cyzczc
= [ f x 0 c x 0 f y c y 0 0 1 ] [ x c y c z c ] = \begin{bmatrix} f_x &amp; 0 &amp;c_x \\ 0 &amp; f_y &amp; c_y \\ 0 &amp; 0 &amp; 1\end{bmatrix}\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} =fx000fy0cxcy1xcyczc
&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace; ↑ \,\,\,\,\,\, \,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\uparrow
我们称这个矩阵为内部参数 K K K

= [ f x 0 c x 0 0 f y c y 0 0 0 1 0 ] 3 × 4 [ x c y c z c 1 ] 4 × 1 =\begin{bmatrix} f_x &amp; 0 &amp;c_x &amp; 0\\ 0 &amp; f_y &amp; c_y &amp; 0 \\ 0 &amp; 0 &amp; 1 &amp; 0 \end{bmatrix}_{3 \times 4} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}_{4 \times 1} =fx000fy0cxcy10003×4xcyczc14×1
&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace; ↑ &ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;   &ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace; ↑ \,\,\,\,\,\, \,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\uparrow\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\ \,\,\, \,\,\,\,\,\,\,\,\,\,\uparrow  
这可以写作 K [ I 0 ] K \begin{bmatrix} I &amp; 0 \end{bmatrix} K[I0] &ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace; \,\,\,\,\,\, \,\,\,\,\,\,\,\,\, 是不是很眼熟,这不是 P c P_c Pc的齐次坐标嘛!

= [ f x 0 c x 0 0 f y c y 0 0 0 1 0 ] 3 × 4 [ R T 0 1 ] 4 × 4 [ x w y w z w 1 ] 4 × 1 = \begin{bmatrix} f_x &amp; 0 &amp;c_x &amp; 0\\ 0 &amp; f_y &amp; c_y &amp; 0 \\ 0 &amp; 0 &amp; 1 &amp; 0 \end{bmatrix}_{3 \times 4} \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} \begin{bmatrix} x_w \\ y_w\\ z_w\\ 1\end{bmatrix} _{4\times1 } =fx000fy0cxcy10003×4[R0T1]4×4xwywzw14×1

= K [ I 0 ] [ R T 0 1 ] P h w =K\begin{bmatrix} I &amp; 0 \end{bmatrix} \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}P_{hw} =K[I0][R0T1]Phw

= K [ R T ] P h w =K\begin{bmatrix} R &amp; T \end{bmatrix} P_{hw} =K[RT]Phw

============================== 总结 ==============================

[ u v 1 ] = [ f x 0 c x 0 0 f y c y 0 0 0 1 0 ] 3 × 4 [ R T 0 1 ] 4 × 4 [ x w y w z w 1 ] 4 × 1 \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x &amp; 0 &amp;c_x &amp; 0\\ 0 &amp; f_y &amp; c_y &amp; 0 \\ 0 &amp; 0 &amp; 1 &amp; 0 \end{bmatrix}_{3 \times 4} \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} \begin{bmatrix} x_w \\ y_w\\ z_w\\ 1\end{bmatrix} _{4\times1 } uv1=fx000fy0cxcy10003×4[R0T1]4×4xwywzw14×1

即:
P h u v = K [ R T ] P h w P_{huv} = K\begin{bmatrix} R &amp; T \end{bmatrix} P_{hw} Phuv=K[RT]Phw

当我们有一个3d模型的n个点的三维坐标,可以通过这个变换得到它的照片。

2. 例子 + 代码

比如以我们提到的点 B B B为例,它的世界坐标是 ( 12 , 15 , 18 ) (12, 15, 18) (12,15,18)

================== 计算过程(1) 从世界坐标到相机坐标 ==================

(1)旋转变换

R x ( α ) = [   1 0 0 0 cos ⁡ α − sin ⁡ α 0 sin ⁡ α cos ⁡ α ] R_x(\alpha) = \begin{bmatrix}\ 1 &amp; 0 &amp;0 \\ 0 &amp; \cos \alpha &amp; -\sin \alpha \\ 0 &amp;\sin \alpha &amp;\cos \alpha \\ \end{bmatrix} Rx(α)= 1000cosαsinα0sinαcosα
R y ( β ) = [   cos ⁡ β 0 sin ⁡ β 0 1 0 − sin ⁡ β 0 cos ⁡ β ] R_y(\beta) = \begin{bmatrix}\ \cos \beta&amp; 0 &amp; \sin \beta\\ 0 &amp; 1 &amp; 0 \\ - \sin \beta&amp; 0 &amp; \cos \beta\\ \end{bmatrix} Ry(β)= cosβ0sinβ010sinβ0cosβ
R x ( γ ) = [ cos ⁡ γ − sin ⁡ γ 0 sin ⁡ γ cos ⁡ γ 0 0 0 1 ] R_x(\gamma) = \begin{bmatrix}\cos \gamma &amp; -\sin \gamma &amp; 0\\ \sin \gamma &amp; \cos \gamma &amp; 0 \\ 0 &amp; 0 &amp; 1 \\ \end{bmatrix} Rx(γ)=cosγsinγ0sinγcosγ0001

此时:
R = R x ( α ) R y ( β ) R x ( γ ) R = R_x(\alpha) R_y(\beta) R_x(\gamma) R=Rx(α)Ry(β)Rx(γ)

def angle2matrix(angles):
    
    ''' 
    根据右手系三个旋转角,
    得到三个旋转矩阵。
    Args:
        angles: [3,]. x, y, z angles
        x: pitch. positive for looking down.
        y: yaw. positive for looking left. 
        z: roll. positive for tilting head right. 
    Returns:
        R: [3, 3]. rotation matrix.
    
    '''
    
    #np.deg2rad将角度变为弧度pi
    x, y, z = np.deg2rad(angles[0]), np.deg2rad(angles[1]), np.deg2rad(angles[2])
    # x
    Rx=np.array([[1,      0,       0],
                 [0, cos(x),  -sin(x)],
                 [0, sin(x),   cos(x)]])
    # y
    Ry=np.array([[ cos(y), 0, sin(y)],
                 [      0, 1,      0],
                 [-sin(y), 0, cos(y)]])
    # z
    Rz=np.array([[cos(z), -sin(z), 0],
                 [sin(z),  cos(z), 0],
                 [     0,       0, 1]])
    
    R=Rz.dot(Ry.dot(Rx))
    return R.astype(np.float32)

(2)平移变换
T = [ T x T y T z ] T = \begin{bmatrix} T_x \\ T_y\\ T_z\\ \end{bmatrix} T=TxTyTz

结合(1)(2),那么对于点 P P P:
P h c = [ x c y c z c 1 ] = [ R T 0 1 ] 4 × 4 [ x w y w z w 1 ] 4 × 1 = [ R T 0 1 ] 4 × 4 P h w P_{hc} = \begin{bmatrix} x_c \\ y_c\\ z_c\\ 1 \\ \end{bmatrix} = \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} \begin{bmatrix} x_w \\ y_w\\ z_w\\ 1\end{bmatrix} _{4\times1 } = \begin{bmatrix} R&amp; T \\ 0 &amp; 1 \\ \end{bmatrix}_{4\times4} P_{hw} Phc=xcyczc1=[R0T1]4×4xwywzw14×1=[R0T1]4×4Phw

def similarity_transform(vertices, s, R, t3d):
    ''' similarity transform. dof = 7.
    3D: s*R.dot(X) + t
    Homo: M = [[sR, t],[0^T, 1]].  M.dot(X)
    Args:(float32)
        vertices: [nver, 3]. 
        s: [1,]. scale factor.
        R: [3,3]. rotation matrix.
        t3d: [3,]. 3d translation vector.
    Returns:
        transformed vertices: [nver, 3]
    '''
    t3d = np.squeeze(np.array(t3d, dtype = np.float32))
    transformed_vertices = s * vertices.dot(R.T) + t3d[np.newaxis, :]

    return transformed_vertices

值得注意的是:函数angle2matrix(angles)中从世界坐标到相机坐标的计算并没有用到齐次坐标。只在欧式坐标下计算,
P c = R 3 × 3 [ x w y w z w ] + [ T x T y T z ] P_c = R_{3 \times 3} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix} Pc=R3×3xwywzw+TxTyTz这并没有关系,因为齐次坐标和非齐次坐标本质上并没有区别:
P h c = [ x c y c z c 1 ] &ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace; P c = [ x c y c z c   ] P_{hc} = \begin{bmatrix} x_c \\ y_c\\ z_c\\ 1 \\ \end{bmatrix} \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, P_c = \begin{bmatrix} x_c \\ y_c\\ z_c\ \end{bmatrix} Phc=xcyczc1Pc=xcyczc 只要在用的时候区分开就好。

我们之所以引入齐次坐标是为了直接计算 P h u v = K [ R T ] P h w P_{huv} = K\begin{bmatrix} R &amp; T \end{bmatrix} P_{hw} Phuv=K[RT]Phw

================== 计算过程(2) 从相机坐标到像素坐标 ==================

我们已经知道:

[ u v 1 ] = [ f x 0 c x 0 f y c y 0 0 1 ] [ x c y c z c ] \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x &amp; 0 &amp;c_x \\ 0 &amp; f_y &amp; c_y \\ 0 &amp; 0 &amp; 1\end{bmatrix}\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} uv1=fx000fy0cxcy1xcyczc

还原一下这个过程,相机坐标 → \rightarrow 归一化相机坐标 → \rightarrow 像素坐标。

(2.1) 相机坐标 → \rightarrow 归一化相机坐标
z n = f z_n = f zn=f x n = f x c z c x_n = f \frac{x_c}{z_c} xn=fzcxc y n = f y c z c y_n = f \frac{y_c}{z_c} yn=fzcyc

我们可以假设物品的深度,远远小于物体与相机间的距离,比如两个点 i , j i,j i,j,两个点的 z c z_c zc方向坐标 z i ≈ z j z_i \approx z_j zizj,此时我们可以直接删去 z c z_c zc方向坐标,且归一化时我们取 f = 1 f = 1 f=1:
z n = f = 1 z_n = f = 1 zn=f=1 x n = x c x_n = x_c xn=xc y n = y c y_n = y_c yn=yc
这样的映射也称为平行映射(orthographic project).

def orthographic_project(vertices):
    return vertices.copy()

这里的代码虽然保留 z c z_c zc,计算上其实我们只取 x c , y c x_c, y_c xc,yc

(2.2) 归一化相机坐标 → \rightarrow 像素坐标

设归一化相机坐标 → \rightarrow 像素坐标时无缩放, 归一化相机坐标的圆心 O ˊ \acute O Oˊ落在像素为 ( w , h ) (w,h) (w,h)的2d照片的中心,此时 O ˊ \acute O Oˊ在像素坐标系下的坐标为 ( w / 2 , h / 2 ) (w/2, h/2) (w/2,h/2)

那么对于点 B B B:

u = f x x c z c + c x = x c + w / 2 u = f_x \frac{x_c}{z_c} + c_x = x_c + w/2 u=fxzcxc+cx=xc+w/2 v = f y y c z c + c y = − y c + h / 2 − 1 v = f_y\frac{y_c}{z_c} + c_y = -y_c + h/2 - 1 v=fyzcyc+cy=yc+h/21

def to_image(vertices, h, w):
    ''' 
    Args:
        vertices: [nver, 3]
        h: height of the rendering
        w : width of the rendering
    Returns:
        projected_vertices: [nver, 3]  
    '''
    image_vertices = vertices.copy()

    # move to center of image
    image_vertices[:,0] = image_vertices[:,0] + w/2
    image_vertices[:,1] = image_vertices[:,1] + h/2
    # flip vertices along y-axis.
    image_vertices[:,1] = h - image_vertices[:,1] - 1
    return image_vertices

至此,得到三维点 B B B在照片里的像素坐标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值