【Arxiv 大模型最新进展】LLaVA-Mini:压缩至一个视觉token,高效计算与实时响应的多模态大模型
LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
Shaolei Zhang, Qingkai Fang等
中国科学院智能信息处理重点实验室, 中国科学院计算技术研究所等
本文提出了LLaVA-Mini,通过对多模态大模型注意力矩阵的逐层分析,发现视觉token主要在模型的前几层被利用,基于这一发现,文章引入了模态预融合技术,将视觉信息提前融入文本token,将输入LLM主干的视觉token压缩至一个token。
研究内容
多模态大模型的视觉token压缩
研究动机
现有方法表现不佳:现有方法依赖于预定义规则来减少视觉编码器输出的token数量,或专注于LLM主干小型化,或者其他方法,仍会导致视觉信息的大量丢失。
技术动机
多模态大模型是如何理解视觉token的?
通过提出这一疑问,本文对模型进行逐层分析,发现视觉token主要在模型的前几层被利用,随着层级的加深,关注视觉token的注意力急剧减少。
解决方案
基于上面的发现——视觉token在模型的浅层中对融合视觉信息至关重要,LLaVA-Mini在LLM主干网络之前引入了一个模态预融合模块,将视觉信息提前融合到文本token中。下面分别介绍LLaVA-Mini的两个重要模块,视觉token压缩模块和模态预融合模块
视觉token压缩模块
LLaVA-Mini 引入了 C × C C \times C C×C可学习的压缩查询 Q v Q_v Qv。这些查询通过交叉注意力与所有视觉token H v H_v Hv进行交互,选择性地提取重要的视觉信息,生成 C × C C \times C C×C压缩的视觉token H ^ v ∈ R C 2 × d h