【Arxiv 大模型最新进展】LLaVA-Mini:压缩至一个视觉token,高效计算与实时响应的多模态大模型

【Arxiv 大模型最新进展】LLaVA-Mini:压缩至一个视觉token,高效计算与实时响应的多模态大模型

LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token

Shaolei Zhang, Qingkai Fang等

中国科学院智能信息处理重点实验室, 中国科学院计算技术研究所等

本文提出了LLaVA-Mini,通过对多模态大模型注意力矩阵的逐层分析,发现视觉token主要在模型的前几层被利用,基于这一发现,文章引入了模态预融合技术,将视觉信息提前融入文本token,将输入LLM主干的视觉token压缩至一个token。

研究内容

多模态大模型的视觉token压缩

研究动机

现有方法表现不佳:现有方法依赖于预定义规则来减少视觉编码器输出的token数量,或专注于LLM主干小型化,或者其他方法,仍会导致视觉信息的大量丢失。

技术动机

多模态大模型是如何理解视觉token的?

通过提出这一疑问,本文对模型进行逐层分析,发现视觉token主要在模型的前几层被利用,随着层级的加深,关注视觉token的注意力急剧减少。

解决方案

基于上面的发现——视觉token在模型的浅层中对融合视觉信息至关重要,LLaVA-Mini在LLM主干网络之前引入了一个模态预融合模块,将视觉信息提前融合到文本token中。下面分别介绍LLaVA-Mini的两个重要模块,视觉token压缩模块和模态预融合模块

视觉token压缩模块

LLaVA-Mini 引入了 C × C C \times C C×C可学习的压缩查询 Q v Q_v Qv。这些查询通过交叉注意力与所有视觉token H v H_v Hv进行交互,选择性地提取重要的视觉信息,生成 C × C C \times C C×C压缩的视觉token H ^ v ∈ R C 2 × d h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值