算法应用:无人机路径规划 Path Planning for UAVs (附Matlab代码

引言

现实世界中的许多工程和科学问题可以归结为优化问题,这是传统方法难以解决的问题。无人机路径规划问题也是如此。无人机路径规划是无人机执行任务和避开作战环境中出现的威胁的关键。规划的路径还需要满足与操作环境施加的安全性和无人机施加的可行性相关的约束。在这里,安全性与路径引导无人机通过环境中出现的威胁(如障碍物)的能力有关。可行性涉及无人机与飞行时间、飞行高度、燃油消耗、转弯速率和爬升角相关的限制。因此,在无碰撞和可行运动方面增强无人机安全的路径规划仍然是一个具有挑战性的问题。
本期分享利用多种多样的群智能优化算法解决无人机路径规划问题(Path Planning for UAVs)。

所考虑的无人机全局路径规划问题,假设飞行环境是固定的,所有障碍物和威胁区域都是已知的。无人机的任务是尽可能安全地飞越高威胁区域。在地球表面惯性参考系OXYZ,将坐标原点o在某点在地上,使用三个正交方向作为x, Y,Z轴,在X, Y轴在水平面和Z轴在垂直方向,标签S:(xs,ys,zs)和T;(xt,yt,zt)分别为起点和目标点,如下图所示。此外,任务区存在着各种危险区、禁飞区和地形障碍(图中圆圈)。路径规划是在满足约束条件的情况下,生成一条从S到T的短而安全的路线。无人机路径可以由除S和T外的N个路径点组成的点集来描述,该点集可以由N个控制点和预定义的轨迹平滑策略确定。

最后,群优化算法以灰狼优化算法(Gwo)作为例子。
结果展示:

 

参考文献

Matlab代码下载

微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。

一举歼灭所有群智能优化算法在无人机路径规划的应用

算法应用:无人机路径规划 Path Planning for UAVs (附Matlab代码)

320多种基础的群智能优化算法-matlab

速来下载!超320种基础优化算法!-Matlab版(截至2023.12.02)

175种群智能优化算法python库

超175+种群智能优化算法Python库!!!

求解cec测试函数-matlab

最新最火!cec2022测试函数来了(附Matlab代码)

解决12工程设计优化问题-matlab

略微出手,工程设计问题(12)(附Matlab代码)

求解11种cec测试函数-python

一网打尽!170+种优化算法求解11种cec测试函数(附Python代码)

解决12种工程设计优化问题-python

大放送!170+种优化算法解决12种工程设计问题(附python代码)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值