【效果突出】优化改进策略:21种混沌映射方法(自由切换)-参数混沌化,改进GWO和HHO,可用于其他优化算法(附matlab代码)

本文介绍了如何通过结合21种常见的混沌映射方法改进基础优化算法,如GWO和HHO,实现参数混沌化。这些混沌映射策略在迭代过程中动态调整算法参数,以提升优化性能。Matlab代码提供下载,展示了混沌映射在优化算法中的应用效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 前期已分享340多种基础优化算法(【选择自由,免费下载】超340种基础群智能优化算法-Matlab版(截至2024.03.10))。根据“没有免费的午餐”,没有一个单一的群体智能优化算法可以解决所有的优化问题,每一个群体智能优化算法都有局限性和限制。所以很多学者根据自身的专业问题需求,对基础优化算法进行了改进和提升,以期获得更为优秀的性能。将混沌映射方法与优化算法相结合是一种常见的改进方式。前期已经推出用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)用法,混沌初始化策略不参与迭代过程。因此,本期推出参数混沌化,算法参数在迭代过程中随着混沌策略不断的更新

不完全整理了21常见的混沌映射方法的matlab代码,并将他们运用在算法的参数选择中。具体有:

  1. Chebyshev混沌映射

  2. Circle 混沌映射

  3. Gauss/mouse 混沌映射

  4. Iterative 混沌映射

  5. Logistic 混沌映射

  6. Piecewise 混沌映射

  7. Sine 混沌映射

  8. Singer 混沌映射

  9. Sinusoidal 混沌映射

  10. Tent 混沌映射

  11. Fuch 混沌映射

  12. SPM 混沌映射

  13. ICMIC 混沌映射

  14. Tent-Logistic-Cosine 混沌映射

  15. Sine-Tent-Cosine 混沌映射

  16. Logistic-Sine-Cosine 混沌映射

  17. Henon 混沌映射

  18. Cubic 混沌映射

  19. Logistic-Tent 混沌映射

  20. Bernoulli 混沌映射

  21. Kent 混沌映射

将它们运用到算法参数选择中。该策略适用于一些有参数需要迭代更新的,典型的算法比如:灰狼优化算法GWO和哈里斯鹰优化算法HHO

GWO的探索和开发转换参数:

图片

图片

a取值在[0,2]之间,是一个随迭次次数变换的线性递减的参数。

类似地,HHO的转换参数:

图片

因此,可以利用混沌映射来改变a和E的值。

21种混沌映射方法分布图

GWO和21种改进的GWO对比

HHO和21种改进的HHO对比 

 

 GWO、HHO、CGWO、CHHO对比

Matlab代码下载:
【效果突出】优化改进策略:21种混沌映射方法-参数混沌化(附matlab代码)

### 基于自适应混沌映射的图像加密算法原理 基于自适应混沌映射的图像加密方法利用了混沌系统的不可预测性敏感依赖初始条件的特点来增强安全性。这类方法通常涉及以下几个方面: - **初始参数设置**:选择合适的混沌映射函数及其对应的控制参数作为密钥的一部分,这些参数决定了后续生成伪随机数列的方式。 - **像素位置置乱**:通过对原始图像中各像素的位置按照一定规则重新排列,使得相邻像素之间的关系被打乱,从而破坏原有统计特性并提高抗攻击能力[^1]。 - **像素值替换**:采用特定方式改变每一个像素的颜色强度值(灰度等级),这一步骤同样依据由选定的混沌模型产生的序列来进行操作,确保变换过程具有高度复杂性与不确定性[^3]。 - **自适应调整机制**:在整个加/解密过程中动态调节某些影响因素,比如迭代次数、映射区间边界等,使整个方案更加灵活多变难以被破解者掌握规律[^4]。 具体而言,在实际编码时会先读取待处理的目标文件,并将其转为适合计算机内部表示形式的数据结构;接着执行上述提到的各项处理步骤直至完成最终输出。值得注意的是,由于不同应用场景下可能存在的特殊需求差异较大,因此还需要针对具体情况做出适当优化改进措施以满足预期效果的要求。 #### 实现示例 下面给出一段简单的MATLAB代码片段用于展示如何运用一维Logistic映射实现基本功能框架下的图像加密流程: ```matlab function encryptedImage = logisticEncrypt(image, key) % 参数设定 r = key; % 控制参数r范围一般设为(3.57,4),这里简直接用key代替 % 获取图像尺寸 [rows, cols] = size(image); % 初始混沌序列 x0 = rand(); % 初始值选取任意一个小于1大于0的小数 chaoticSeq = zeros(rows * cols, 1); for i = 1:(rows * cols) x0 = r * x0 * (1 - x0); chaoticSeq(i) = floor(mod(x0 * 256, 256)); % 将浮点型转换成整数型且限定在[0,255] end % 加密操作 flatImg = double(reshape(image', [], 1)); encryptedFlatImg = bitxor(flatImg, round(chaoticSeq)); % 对应位异或运算达到混淆目的 % 返回结果 encryptedImage = reshape(uint8(encryptedFlatImg), cols, rows)'; end ``` 此段程序实现了最基本的基于Logistic映射的图像加密逻辑,其中`logisticEncrypt()`接收一幅输入图像以及一个代表混沌系统控制因子的关键数值作为入口参数,经过一系列计算之后返回已加密版本的结果对象。当然这只是非常基础的概念验证性质的例子而已,在真实项目里往往还需考虑更多细节问题如效率提升、鲁棒性加强等方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值