Neural ODE 神经常微分方程

文章介绍了NeuralODE在解决常微分方程(ODE)中的应用,包括欧拉法的递归思想和离散化过程,以及它与牛顿法和梯度下降法的相似性。此外,提到了ODEsolver在数值求解中的作用,如Euler、改进Euler、Runge-Kutta(RK)方法,以及它们在精度上的差异。文章还强调了ODE的伴随方法在反向传播中减少内存占用的优势,特别是在处理梯度下降算法迭代过程的ODE离散化问题时。最后,文章指出这种理论可应用于估计参数的网络设计和损失收敛的控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Neural ODE

ODE常微分方程
欧拉法求解:欧拉法求解过程是一个递归的过程,这个思想和牛顿法、梯度下降法是相似的。并且它将函数离散化,分割成一个个小段来求解。欧拉法求解的常微分方程的形式通常为在这里插入图片描述
在这里插入图片描述
图片来自知乎Neural ODE,这个世界终究是连续的

使用欧拉法解方程的例子:摘自欧拉法(Euler‘s method)求常微分方程(ODE)近似解
在这里插入图片描述
代码:

import numpy as np
import matplotlib.pyplot as plt
y0=1 #初始条件
def f(x,y):
    return y-2*x/y
def Eular(y0,n,f):
    y=[y0] #储存各个点的函数值
    y0=y0
    for x in np.linspace(0,1,n):
        '''求函数在区间[0,1]近似解,分n份'''
        y1=y0+f(x,y0)/n
        y.append(y1)
        y0=y1
    return y
y=Eular(1,10,f=f)
x=np.linspace(0,1,len(y))
plt.plot(x,y,color='blue')
plt.show()

神经常微分方程:
在这里插入图片描述
求解常微分方程时,可以用ODEsolver。它就相当于是计算器,我们给出初始to,h(t0),神经网络,要求的时间t ,它就可以自动求解。
在这里插入图片描述
ODEsolver本质上就是用数值解法一步步求解到T。数值法求wi+1是由wi加上步长h*区间上的平均变化率。不同的算法,对平均变化率的取法不同。
Euler方法的平均变化率取的ti点的导数
改进Euler:
先由当前点用欧拉法求出下一点wi+1’的值,再用当前点梯度和预报点梯度的平均 作为 区间平均变化率 求解真正wi+1点的值。
在这里插入图片描述
龙格-库塔方法比Euler有更高的精度。
rk2:
先用欧拉法估计h/2处的梯度,再用这个值计算wi+1。

rk4:
wi+1由wi和四个梯度的加权平均确定,步长 h。
k 1 是这一步开始处使用欧拉方法的导数;
k 2 是 h/2 处的导数,在 k 1基础上;
k 3 依旧是 h/2 处的导数,在k2基础上;
k 4 是在k3基础上终点h 处的导数。
几种数值解法和真实解的对比,RK方法的准确率比较高。

一般的反向传播算法 要保存前向计算过程中的activation激活图。而ODE使用adjoint method (伴随方法),不需要保存激活图也能计算梯度。
因为伴随方法 把反向过程 看作一个新的ODE初值求解问题 (IVP),直接用ODE Solver计算得到梯度值。这样减少内存占用。

应用:

最近的研究发现梯度下降算法的迭代过程(GDA) 可以看作是常微分方程 (ODE) 的欧拉离散化。
在这里插入图片描述
设计一个网络来估计我们要求的参数的梯度,这里是原型p。
有了估计的梯度后,使用odesolver求解p在指定时刻的值。这个指定时刻M由训练阶段使损失收敛的超参决定。

### 经常微分方程Neural ODEs)网络概述 经常微分方程Neural Ordinary Differential Equations, Neural ODEs)是一种新型的深度学习框架,它通过连续动力学建模替代离散化的层结构。传统的经网络由一系列离散的层组成,而Neural ODE则定义了一个输入到输出的映射作为一组ODE的解[^4]。 #### 基本原理 Neural ODE的核心思想是将隐藏状态 \( h(t) \) 的演化描述为时间 \( t \) 上的一个连续函数,该函数由一个可学习的动力系统控制: \[ \frac{dh(t)}{dt} = f(h(t), t, θ), \] 其中 \( f \) 是一个由经网络参数化的时间依赖向量场,\( θ \) 表示网络的参数集合。为了得到最终的状态 \( h(T) \),可以通过数值求解器积分上述ODE获得结果[^5]。 ```python import torch from torchdiffeq import odeint class ODENet(torch.nn.Module): def __init__(self, dim): super(ODENet, self).__init__() self.linear = torch.nn.Linear(dim, dim) def forward(self, t, y): # 定义导数关系 return self.linear(y) def run_ode(): func = ODENet(dim=10) initial_state = torch.randn(10) # 初始条件 timespan = torch.tensor([0., 5.]) # 积分区间 solution = odeint(func, initial_state, timespan) # 数值求解ODE return solution[-1] # 返回t=5时刻的结果 result = run_ode() print(result) ``` 此代码片段展示了如何利用 `torchdiffeq` 库实现简单的Neural ODE模型[^6]。 #### 实现方法的优势与挑战 相比传统经网络,Neural ODE具有以下优势: - **内存效率高**:由于不需要存储每一层中间激活值用于反向传播,因此显著减少了GPU显存占用。 - **灵活调整精度**:可以根据需求自由调节数值积分器的误差容忍度以平衡速度和准确性。 然而也存在一些挑战: - 计算复杂度较高,尤其是对于复杂的矢量场; - 需要精心设计适合特定任务的ODE形式以及初始化策略[^7]。 #### 应用场景举例 1. **时间序列预测** 类似于液态经网络[Liquid State Machine][^8],Neural ODE特别适用于处理具有内在连续变化规律的数据集,比如股票价格波动或者天气预报等。 2. **图像分类** ResNet架构可以被看作是对离散版本的Neural ODE近似的实例;相应地,采用真正的连续型表示可能带来更优性能表现[^9]。 3. **概率分布生成** Normalizing Flows是一类强大的生成对抗网络变体,它们能够借助Neural ODE构建更加平滑且多样化的样本空间转换路径[^10]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值