数字图像处理 第七章 小波和分辨率处理

在这里插入图片描述

引言 P287

  • 虽然 傅里叶变换 一直是基于变换的图像处理的基石,但近年来一种新的称为 小波变换 的变换使得 压缩、传输和分析图像变得更为容易
  • 与基函数为 正弦函数 的傅里叶变换 不同,小波变换的基函数是 小型波,称为 小波,它具有 a) 变化的频率 和 b) 有限的持续时间
    a) 这就使得他们为图像提供一张等效的乐谱,该乐谱不但显示了 i)要演奏的音符(或频率),而且显示了 ii)演奏这些音符的时间
    b) 另一方面,傅里叶变换只提供 音符 或 频率信息,时间信息在变换过程中则丢失
  • 小波 是 多分辨率理论 这种信号处理与分析方法 的 基础多分辨率理论 有效的统一了多个学科的技术,包括 来自信号处理的 a) 子带编码、来自数字语音识别的 b) 正交镜像滤波 及 c) 金字塔图像处理
  • 多分辨率理论涉及 多个分辨率下的信号(或图像)表示与分析。这种方法的优势明显,某种分辨率下无法检测的特性,在另一种分辨率下会很容易检测
  • 本章从 多分辨率的角度 来审视基于 小波 的变换

一、背景 P288 - P299

  • 观察图像时,看到的通常是由 相似纹理 和 灰度级连成的区域,它们相结合就形成了物体
    a) 如果 物体的尺寸较小 或 对比度较低(图像细节很难展现)时,通常以较高的分辨率(单位长度上的像素个数多)来研究它们
    b) 如果 物体的的尺寸较大或对比度较高(图像细节能很好的展现),则粗略的观察就已足够
    c) 如果较小的物体和较大物体(或对比度较低 和 对比度较高的物体)同时存在,那么以不同分辨率来研究它们将更具有优势。这就是 多分分辨率处理的 基本动机
  • 从数学角度来看,图像是具有 局部变化统计特性的 亮度值的 二维序列,这种统计特性是由突变特征的不同组合导致的,如:边缘 和 反差鲜明的同质区

在这里插入图片描述


1.1 图像金字塔 P290 - P292

  • 以多个分辨率来表示图像的一种结构是 图像金字塔,这种结构非常有效,且概念简单。图像金字塔最初用于机器视觉和图像压缩,是一系列 以金字塔形状排列的、分辨率逐步降低的图像集合(从下向上)
    在这里插入图片描述

  • 如图所示
    ① 金字塔的 底部 是 待处理图像的高分辨率表示
    顶部 则 包含一个低分辨率的近似
    ③ 向金字塔 上层移动 时,尺寸 和 分辨率逐步降低
    ④ 基础级 J 的大小为 2 J × 2 J 2^J \times 2^J 2J×2J N × N N \times N N×N,其中 J = l o g 2 N J = log_2 N J=log2N,顶点级 0 的大小为 1 × 1 1 \times 1 1×1 (即单个像素),通常 j 级的大小为 2 j × 2 j 2^j \times 2^j 2j×2j,其中 0 ≤ j ≥ J 0 \leq j \geq J 0jJ
    ⑤ 虽然图中显示的金字塔是 由从 2 J × 2 J 2^J \times 2^J 2J×2J 2 0 × 2 0 2^0 \times 2^0 20×20 的 J+1 个分辨率级别组成,但大部分图像金字塔会 截短到 P+1 级,其中 1 ≤ P ≥ J 1 \leq P \geq J 1PJ 且 j = J - P,…,J - 2,J - 1,J。也就是说,我们通常会 将级别限制到 P 来降低原图像的分辨率的近似(因为近似到单个像素是没有价值的)

  • P+1 级金字塔(P > 0)中的像素总数是
    N 2 ( 1 + 1 ( 4 ) 1 ) + 1 ( 4 ) 2 ) + . . . + 1 ( 4 ) P ) ≤ 3 4 N 2 N^2(1 + \frac{1}{(4)^1}) + \frac{1}{(4)^2}) + ... + \frac{1}{(4)^P}) \leq \frac{3}{4} N^2 N2(1+(4)11)+(4)21)+...+(4)P1)43N2

在这里插入图片描述

  • 上图像显示了一个简单的系统,该系统构建了两个紧密联系的图像金字塔
    ① 第 j+1 级近似输出提供建立一个 近似值金字塔的图像(即:逐级向上降低图像的分辨率)
    ② 第 j 级预测残差输出构建一个补充的 预测残差金字塔。与近似金字塔不同,预测残差金字塔 仅包含一个输入图像的分辨率降低的近似(在金字塔的顶部,即 J - P级)。所有其他级包含的都是 预测残差,其中 第 j 级预测残差(对于 J − P + 1 ≤ j ≥ J J - P + 1 \leq j \geq J JP+1jJ)定义为第 j 级近似(方框图的输入)与基于第 j - 1 级近似(方框图的近似输出)的第 j 级近似的估计之间的差
  • 基于上图系统的求 a) 近似 和 b) 残差金字塔 的步骤:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 对于近似滤波器与插值滤波器
    ① 有用的近似滤波技术包括:(用于平滑图像,减小下采样导致的混淆问题)
    a) 邻域平均(即:空间域均值滤波器),它产生 平均金字塔
    b) 高斯低通滤波器(即:频率域低通滤波),它产生 高斯金字塔
    c) 不过滤,他产生 子取样金字塔
    ② 有用的均值滤波技术包括:(用于填补图像,以免 上采样 所得图像尺寸与输入图像尺寸不符)
    a) 最近邻域
    b) 双线性内插法
    c) 双三次内插法

  • 上采样 与 下采样
    上采样方框用于加倍(行、列数乘2) 计算得到 预测图像(一维)
    f 2 ↑ ( n ) = { f ( n / 2 ) , n 为偶数 0 , 其他 f_{2\uparrow}(n) = \begin{cases} f(n/2),n为偶数\\ 0,其他\\ \end{cases} f2(n)={f(n/2),n为偶数0,其他
    下采样方框用于减半(行、列数乘2)计算得到的 近似图像(一维)
    f 2 ↓ ( n ) = f ( 2 n ) f_{2\downarrow}(n) = f(2n) f2(n)=f(2n)
    注意:由于n从0开始取,所以扩展到二维图像空间域中,实际是取图像的奇数行、奇数列
    上采样 可视为在序列中的每个样本后插入 0(即:在每行每列后或下填 0);下采样 可视为每隔一个样本就丢弃一个样本(即:只取偶数行偶数列的像素)


1.2 子带编码 P292 - P297

  • 另一种与多分辨率相关的重要图像技术是 子带编码

  • 在子带编码中,一幅图像被分解为一组频带受限(即:在频率域中取某一频率范围的量)的分量,称为 子带。由于执行了 分解 ,所以子带可以 重组 在一起,无误差地重建原始图像

  • 分解 和 重建是借助于数字滤波器实现的,所以我们的讨论从数字信号处理(DSP)和 数字信号滤波的简介开始
    在这里插入图片描述

    ① 上图中的简单数字滤波器,并注意到它是由三个基本部件组成的,即:a) 延迟单元;b) 乘法器 和 c) 加法器
    ② 对于延迟单元的处理。例如,延迟序列 $ f(n-2) $ 为:
    f ( n − 2 ) = { . . . f ( 0 ) , n = 2 f ( 1 ) , n = 2 + 1 = 3 . . . f(n - 2) = \begin{cases} .\\ .\\ .\\ f(0),n = 2\\ f(1),n = 2 + 1 = 3\\ .\\ .\\ .\\ \end{cases} f(n2)= ...f(0),n=2f(1),n=2+1=3...
    ③ 上图中的 a) 延迟单元输出延迟序列为:$ f(n-1),f(n-2),…,f(n - K + 1) $,它们分别 b) 与常数 $ h(0),h(1),…,h(K - 1) $相乘,然后 c) 求和,可产生滤波后的输出序列:
    f ^ ( n ) = ∑ k = − ∞ ∞ h ( k ) f ( n − k ) = f ( n ) ⊗ h ( n ) \widehat f(n) = \displaystyle\sum_{k = -\infty}^{\infty} h(k)f(n-k) = f(n) \otimes h(n) f (n)=k=h(k)f(nk)=f(n)h(n)
    式中,该系统的输出为:$ a) f(n) $ 输入序列 与 b) $ h(n) $ 常数序列卷积
    在这里插入图片描述

    ④ 如果系统的 输入 $ f(n) $ 为离散的单位冲激,则上述的卷积公式变为:
    f ^ ( n ) = ∑ k = − ∞ ∞ h ( k ) δ ( n − k ) = h ( n ) \widehat f(n) = \displaystyle\sum_{k = -\infty}^{\infty} h(k)\delta(n - k) = h(n) f (n)=k=h(k)δ(nk)=h(n)
    上式显示出,若 输入为离散单位冲激函数 时,系统的 输出变为 常数序列的离散函数h(n)。单位冲激越过滤波器的顶端,从左到右移动(从一个单元延迟到下一个单元延迟),产生一个输出,假设 该输出就是延迟冲激位置的系数值。因为有 K 个系数,所以冲激响应的长度为 K,且这种滤波器称为 有限冲激响应滤波器(FIR)

在这里插入图片描述

  • 上图显示了6个功能上相关的滤波器的冲激响应(即:使用 h 1 ( n ) h_1 (n) h1(n) 作为基元对其修改的过程
    在这里插入图片描述

  • 如上图,考虑一个两波段子带编码和解码系统。改系统由两个滤波器组构成,每个滤波器组包含如上图 (a) 中所示的两个 FIR 滤波器(即: h 0 ( n ) 与 h 1 ( n ) h_0 (n) 与 h_1 (n) h0(n)h1(n)、$ g_0 (n) 与 g_1 (n))

    ① 包含滤波器 h 0 ( n ) h_0(n) h0(n) h 1 ( n ) h_1(n) h1(n)分析滤波器组 用于把输入序列分成两个半长度 f l p ( n ) 和 f h p ( n ) f_{lp}(n) 和 f_{hp}(n) flp(n)fhp(n),表示输入的子带
    ② 滤波器 h 0 ( n ) h_0 (n) h0(n) h 1 ( n ) h_1 (n) h1(n)半波段滤波器(即:选取某频率范围(一半)的截取输入序列),它们的 理想传递特性 H 0 H_0 H0 H 1 H_1 H1(即:在频率域中的特性)如上图中(b)所示。
    a) 滤波器 h 0 ( n ) h_0 (n) h0(n) 是一个 低通滤波器,其输出即子带称为 f ( n ) f(n) f(n) 的近似(即:对原图像像进行平滑后的结果)
    b) 滤波器 h 1 ( n ) h_1(n) h1(n) 是一个 高通滤波器,其输出即子带 $ f_{hp} (n) $ 称为 f ( n ) f(n) f(n) 的高频部分 或 细节部分(类似于拉普拉斯算子的结果)
    ③ 综合滤波器组 g 0 ( n ) g_0 (n) g0(n) g 1 ( n ) g_1 (n) g1(n) f l p ( n ) f_{lp} (n) flp(n) f h p ( n ) f_{hp} (n) fhp(n) 合并,产生 f ^ ( n ) \widehat f(n) f (n)
    ④ 子带编码的目的是,选择 h 0 ( n ) , h 1 ( n ) , g 0 ( n ) , g 1 ( n ) h_0 (n),h_1 (n) ,g_0 (n),g_1 (n) h0(n)h1(n),g0(n),g1(n),以便 f ^ ( n ) = f ( n ) \widehat f(n) = f(n) f (n)=f(n)(即:子带编码的目的是 组建 分析滤波器组,输出 f l p ( n ) 、 f h p ( n ) f_{lp} (n)、f_{hp} (n) flp(n)fhp(n) 子带编码 和 解码系统(解码系统即 组建 综合滤波器组,输入 f l p ( n ) 、 f h p ( n ) f_{lp} (n)、f_{hp} (n) flp(n)fhp(n) ,输出 f ^ ( n ) \widehat f(n) f (n) )的 输入 和 输出 是相同的 。完成这一任务时,就可以说最终系统采用了 完美重建滤波器
    综合滤波器 都是 分析滤波器调制 后的形式 —— 而且 有(且只有)一个综合滤波器的符号被反转。要实现完美重构,综合滤波器和分析滤波器的冲激响应必须按如下两种方式之一关联起来:
    g 0 ( n ) = ( − 1 ) n h 1 ( n ) , g 1 ( n ) = ( − 1 ) n + 1 h 0 ( n ) g_0 (n) = (-1)^n h_1 (n),g_1 (n) = (-1)^{n+1} h_0 (n) g0(n)=(1)nh1(n)g1(n)=(1)n+1h0(n)

    g 0 ( n ) = ( − 1 ) n + 1 h 1 ( n ) , g 1 ( n ) = ( − 1 ) n + 1 h 0 ( n ) g_0 (n) = (-1)^n+1 h_1 (n),g_1 (n) = (-1)^{n+1} h_0 (n) g0(n)=(1)n+1h1(n)g1(n)=(1)n+1h0(n)
    上式中的 h 0 ( n ) , h 1 ( n ) , g 0 ( n ) , g 1 ( n ) h_0 (n) ,h_1 (n),g_0 (n),g_1(n) h0(n),h1(n)g0(n),g1(n) 被视为 交叉调制,因为在 二带子带编码和解码系统图 中,斜对着的滤波器是由调制关联起来的 [ 调制因子是 − ( − 1 ) n -(-1)^n (1)n ( − 1 ) n + 1 (-1)^{n+1} (1)n+1 时,符号相反 ]
    h 0 ( n ) , h 1 ( n ) , g 0 ( n ) , g 1 ( n ) h_0 (n) ,h_1 (n),g_0 (n),g_1(n) h0(n),h1(n)g0(n),g1(n) 同时也满足下列 双正交条件:
    < h i ( 2 n − k ) , g j ( k ) > = δ ( i − j ) δ ( n ) , i , j = 0 , 1 < h_i(2n - k),g_j (k) > = \delta(i - j) \delta(n),i,j = {0,1} <hi(2nk),gj(k)>=δ(ij)δ(n)i,j=0,1
    式中,$ < h_i(2n - k),g_j (k) > $表示 $ h_i(2n - k) $ 和 $ g_j (k) $ 的内积。i 不等于 j 时,内积为0;i 和 j 相等时,内积是单位离散冲激函数 $ \delta(n) $
    ⑦ 在子带编码中以及 快速小波变换的开发中,特别重要的是克服了双正交性的滤波器,他要求
    < g i ( n ) , g j ( n + 2 m ) > = δ ( i − j ) δ ( m ) , i , j = 0 , 1 < g_i(n),g_j (n + 2m) > = \delta(i - j) \delta(m),i,j = {0,1} <gi(n),gj(n+2m)>=δ(ij)δ(m)i,j=0,1
    上式 定义了完美重建滤波器组的正交性。同时可以证明正交滤波器满足如下两个条件:
    g 1 ( n ) = ( − 1 ) n g 0 ( K e v e n − 1 − n ) g_1 (n) = (-1)^n g_0 (K_{even} - 1 - n) g1(n)=(1)ng0(Keven1n)
    h i ( n ) = g i ( K e v e n − 1 − n ) , i = 0 , 1 h_i (n) = g_i (K_{even} - 1 - n),i = {0,1} hi(n)=gi(Keven1n),i=0,1
    式中,
    a) $ K_{even} $的下标用于指出 滤波器系数的值 必须能被2整除(即偶数)
    b) 同时可以看出 综合滤波器 g 1 g_1 g1 通过 顺序反转和调制 g 0 g_0 g0 建立联系; h 0 h_0 h0 h 1 h_1 h1 分别是 综合滤波器 g 0 g_0 g0 g 1 g_1 g1顺序反转形式。这样,标准正交滤波器组(即:满足上述关系的滤波器组)就可围绕 单一滤波器(称之为原型,上式中显示的原型为 g 0 g_0 g0的冲激响应来开发;其余滤波器可以通过指定原型的冲激响应来计算。双正交滤波器组要求由两个原型
    在这里插入图片描述

  • 上图显示了 子带图像编码的一个二维 4 带宽滤波器组,a) 首先用一个维度(即垂直方向),b) 然后用于另一个维度(即水平方向)。此外


1.3 哈尔变换 P297 - P299


二、多分辨率展开 P300 - P306

2.1 级数展开 P300 - P301


2.2 尺度函数 P301 - P304


2.3 小波函数 P304 - P306


三、一维小波变换 P306 - P311

3.1 小波级数展开 P306 - P308


3.2 离散小波变换 P308 - 309


3.3 连续小波变换 P309 - P311


四、快速小波变换 P311 - P317


五、二维小波变换 P317 - P322


六、小波包 P322 - P329

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ModelBulider

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值