模型调参及优化

文章讨论了调参的重要性,包括训练权重参数和偏置参数以降低训练误差。当泛化误差增加时,可能面临过拟合问题,这时可以采用权重衰退或丢弃法作为正则化手段。权重衰退通过减小权重来防止过拟合,而丢弃法则通过随机设置隐藏层输出的部分元素为0来增加模型的鲁棒性。这两种方法只在训练阶段使用,以避免过拟合并提高模型的泛化能力。
摘要由CSDN通过智能技术生成

调参

  • 调权重参数,偏置参数

    训练数据集用来训练参数w,b

  • 调超参数

    验证数据集用来选择超参数学习率lr,隐藏层大小等

  • 如何调参

    在这里插入图片描述
    当泛化误差和训练误差都没有降下去说明欠拟合;当训练误差降下去,但泛化误差出现上升形式,说明过拟合

优化

  • 权重衰退

    在过拟合时,可以使用权重衰退,每次更新参数W_t+1时都会先将W_t减小,梯度计算如下在这里插入图片描述
    参数更新如下
    在这里插入图片描述

    使用torch框架可以简洁实现权重衰退,wd就是上述的ʎ:
    在这里插入图片描述

  • 丢弃法

    丢弃法相当于在输入中加入噪音,且输入的期望(期望是所有元素出现概率乘以元素值值之和)不变,公式如下 在这里插入图片描述
    在这里插入图片描述
    在过拟合时可以使用丢弃法,常用于多层感知机的隐藏层输出,将输出的某些元素随机设为0,剩下元素放大,丢失法通常在每层的激活函数之后使用,丢弃法和权重衰退都是正则项,用于权重的变化,所以只在训练中使用,不用于测试。丢弃法是多层感知机中主流的一种正则化方法,高复杂模型+丢弃法效果一般比低复杂模型效果好一些。torch的简洁实现如下 在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值