和差化积公式 是三角函数的重要公式,它将三角函数的和式或差式转化为积式。以下是公式及其推导:
1. 基本公式
- sin A + sin B = 2 sin ( A + B 2 ) cos ( A − B 2 ) \sin A+\sin B=2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) sinA+sinB=2sin(2A+B)cos(2A−B)
- sin A − sin B = 2 cos ( A + B 2 ) sin ( A − B 2 ) \sin A-\sin B=2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) sinA−sinB=2cos(2A+B)sin(2A−B)
- cos A + cos B = 2 cos ( A + B 2 ) cos ( A − B 2 ) \cos A+\cos B=2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) cosA+cosB=2cos(2A+B)cos(2A−B)
- cos A − cos B = − 2 sin ( A + B 2 ) sin ( A − B 2 ) \cos A-\cos B=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) cosA−cosB=−2sin(2A+B)sin(2A−B)
2. 推导过程
(1) sin A + sin B \sin A+\sin B sinA+sinB
利用和角公式:
sin
A
+
sin
B
=
sin
(
A
+
B
2
+
A
−
B
2
)
+
sin
(
A
+
B
2
−
A
−
B
2
)
\sin A+\sin B=\sin\left(\frac{A+B}{2}+\frac{A-B}{2}\right)+\sin\left(\frac{A+B}{2}-\frac{A-B}{2}\right)
sinA+sinB=sin(2A+B+2A−B)+sin(2A+B−2A−B)
根据
sin
(
x
+
y
)
=
sin
x
cos
y
+
cos
x
sin
y
\sin(x+y)=\sin x\cos y+\cos x\sin y
sin(x+y)=sinxcosy+cosxsiny,化简后:
sin
A
+
sin
B
=
2
sin
(
A
+
B
2
)
cos
(
A
−
B
2
)
\sin A+\sin B=2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)
sinA+sinB=2sin(2A+B)cos(2A−B)
(2) sin A − sin B \sin A-\sin B sinA−sinB
利用和角公式:
sin
A
−
sin
B
=
sin
(
A
+
B
2
+
A
−
B
2
)
−
sin
(
A
+
B
2
−
A
−
B
2
)
\sin A-\sin B=\sin\left(\frac{A+B}{2}+\frac{A-B}{2}\right)-\sin\left(\frac{A+B}{2}-\frac{A-B}{2}\right)
sinA−sinB=sin(2A+B+2A−B)−sin(2A+B−2A−B)
根据
sin
(
x
−
y
)
=
sin
x
cos
y
−
cos
x
sin
y
\sin(x-y)=\sin x\cos y-\cos x\sin y
sin(x−y)=sinxcosy−cosxsiny,化简后:
sin
A
−
sin
B
=
2
cos
(
A
+
B
2
)
sin
(
A
−
B
2
)
\sin A-\sin B=2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)
sinA−sinB=2cos(2A+B)sin(2A−B)
(3) cos A + cos B \cos A+\cos B cosA+cosB
利用和角公式:
cos
A
+
cos
B
=
cos
(
A
+
B
2
+
A
−
B
2
)
+
cos
(
A
+
B
2
−
A
−
B
2
)
\cos A+\cos B=\cos\left(\frac{A+B}{2}+\frac{A-B}{2}\right)+\cos\left(\frac{A+B}{2}-\frac{A-B}{2}\right)
cosA+cosB=cos(2A+B+2A−B)+cos(2A+B−2A−B)
根据
cos
(
x
+
y
)
=
cos
x
cos
y
−
sin
x
sin
y
\cos(x+y)=\cos x\cos y-\sin x\sin y
cos(x+y)=cosxcosy−sinxsiny,化简后:
cos
A
+
cos
B
=
2
cos
(
A
+
B
2
)
cos
(
A
−
B
2
)
\cos A+\cos B=2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)
cosA+cosB=2cos(2A+B)cos(2A−B)
(4) cos A − cos B \cos A-\cos B cosA−cosB
利用和角公式:
cos
A
−
cos
B
=
cos
(
A
+
B
2
+
A
−
B
2
)
−
cos
(
A
+
B
2
−
A
−
B
2
)
\cos A-\cos B=\cos\left(\frac{A+B}{2}+\frac{A-B}{2}\right)-\cos\left(\frac{A+B}{2}-\frac{A-B}{2}\right)
cosA−cosB=cos(2A+B+2A−B)−cos(2A+B−2A−B)
根据
cos
(
x
−
y
)
=
cos
x
cos
y
+
sin
x
sin
y
\cos(x-y)=\cos x\cos y+\sin x\sin y
cos(x−y)=cosxcosy+sinxsiny,化简后:
cos
A
−
cos
B
=
−
2
sin
(
A
+
B
2
)
sin
(
A
−
B
2
)
\cos A-\cos B=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)
cosA−cosB=−2sin(2A+B)sin(2A−B)
3. 总结
公式类型 | 公式 |
---|---|
sin A + sin B \sin A+\sin B sinA+sinB | 2 sin ( A + B 2 ) cos ( A − B 2 ) 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) 2sin(2A+B)cos(2A−B) |
sin A − sin B \sin A-\sin B sinA−sinB | 2 cos ( A + B 2 ) sin ( A − B 2 ) 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) 2cos(2A+B)sin(2A−B) |
cos A + cos B \cos A+\cos B cosA+cosB | 2 cos ( A + B 2 ) cos ( A − B 2 ) 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) 2cos(2A+B)cos(2A−B) |
cos A − cos B \cos A-\cos B cosA−cosB | − 2 sin ( A + B 2 ) sin ( A − B 2 ) -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) −2sin(2A+B)sin(2A−B) |
这些公式在三角函数积分、解方程及傅里叶分析中都有广泛应用。