和差化积公式及其推导过程

和差化积公式 是三角函数的重要公式,它将三角函数的和式或差式转化为积式。以下是公式及其推导:


1. 基本公式

  • sin ⁡ A + sin ⁡ B = 2 sin ⁡ ( A + B 2 ) cos ⁡ ( A − B 2 ) \sin A+\sin B=2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) sinA+sinB=2sin(2A+B)cos(2AB)
  • sin ⁡ A − sin ⁡ B = 2 cos ⁡ ( A + B 2 ) sin ⁡ ( A − B 2 ) \sin A-\sin B=2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) sinAsinB=2cos(2A+B)sin(2AB)
  • cos ⁡ A + cos ⁡ B = 2 cos ⁡ ( A + B 2 ) cos ⁡ ( A − B 2 ) \cos A+\cos B=2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) cosA+cosB=2cos(2A+B)cos(2AB)
  • cos ⁡ A − cos ⁡ B = − 2 sin ⁡ ( A + B 2 ) sin ⁡ ( A − B 2 ) \cos A-\cos B=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) cosAcosB=2sin(2A+B)sin(2AB)

2. 推导过程

(1) sin ⁡ A + sin ⁡ B \sin A+\sin B sinA+sinB

利用和角公式:
sin ⁡ A + sin ⁡ B = sin ⁡ ( A + B 2 + A − B 2 ) + sin ⁡ ( A + B 2 − A − B 2 ) \sin A+\sin B=\sin\left(\frac{A+B}{2}+\frac{A-B}{2}\right)+\sin\left(\frac{A+B}{2}-\frac{A-B}{2}\right) sinA+sinB=sin(2A+B+2AB)+sin(2A+B2AB)

根据 sin ⁡ ( x + y ) = sin ⁡ x cos ⁡ y + cos ⁡ x sin ⁡ y \sin(x+y)=\sin x\cos y+\cos x\sin y sin(x+y)=sinxcosy+cosxsiny,化简后:
sin ⁡ A + sin ⁡ B = 2 sin ⁡ ( A + B 2 ) cos ⁡ ( A − B 2 ) \sin A+\sin B=2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) sinA+sinB=2sin(2A+B)cos(2AB)


(2) sin ⁡ A − sin ⁡ B \sin A-\sin B sinAsinB

利用和角公式:
sin ⁡ A − sin ⁡ B = sin ⁡ ( A + B 2 + A − B 2 ) − sin ⁡ ( A + B 2 − A − B 2 ) \sin A-\sin B=\sin\left(\frac{A+B}{2}+\frac{A-B}{2}\right)-\sin\left(\frac{A+B}{2}-\frac{A-B}{2}\right) sinAsinB=sin(2A+B+2AB)sin(2A+B2AB)

根据 sin ⁡ ( x − y ) = sin ⁡ x cos ⁡ y − cos ⁡ x sin ⁡ y \sin(x-y)=\sin x\cos y-\cos x\sin y sin(xy)=sinxcosycosxsiny,化简后:
sin ⁡ A − sin ⁡ B = 2 cos ⁡ ( A + B 2 ) sin ⁡ ( A − B 2 ) \sin A-\sin B=2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) sinAsinB=2cos(2A+B)sin(2AB)


(3) cos ⁡ A + cos ⁡ B \cos A+\cos B cosA+cosB

利用和角公式:
cos ⁡ A + cos ⁡ B = cos ⁡ ( A + B 2 + A − B 2 ) + cos ⁡ ( A + B 2 − A − B 2 ) \cos A+\cos B=\cos\left(\frac{A+B}{2}+\frac{A-B}{2}\right)+\cos\left(\frac{A+B}{2}-\frac{A-B}{2}\right) cosA+cosB=cos(2A+B+2AB)+cos(2A+B2AB)

根据 cos ⁡ ( x + y ) = cos ⁡ x cos ⁡ y − sin ⁡ x sin ⁡ y \cos(x+y)=\cos x\cos y-\sin x\sin y cos(x+y)=cosxcosysinxsiny,化简后:
cos ⁡ A + cos ⁡ B = 2 cos ⁡ ( A + B 2 ) cos ⁡ ( A − B 2 ) \cos A+\cos B=2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) cosA+cosB=2cos(2A+B)cos(2AB)


(4) cos ⁡ A − cos ⁡ B \cos A-\cos B cosAcosB

利用和角公式:
cos ⁡ A − cos ⁡ B = cos ⁡ ( A + B 2 + A − B 2 ) − cos ⁡ ( A + B 2 − A − B 2 ) \cos A-\cos B=\cos\left(\frac{A+B}{2}+\frac{A-B}{2}\right)-\cos\left(\frac{A+B}{2}-\frac{A-B}{2}\right) cosAcosB=cos(2A+B+2AB)cos(2A+B2AB)

根据 cos ⁡ ( x − y ) = cos ⁡ x cos ⁡ y + sin ⁡ x sin ⁡ y \cos(x-y)=\cos x\cos y+\sin x\sin y cos(xy)=cosxcosy+sinxsiny,化简后:
cos ⁡ A − cos ⁡ B = − 2 sin ⁡ ( A + B 2 ) sin ⁡ ( A − B 2 ) \cos A-\cos B=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) cosAcosB=2sin(2A+B)sin(2AB)


3. 总结

公式类型公式
sin ⁡ A + sin ⁡ B \sin A+\sin B sinA+sinB 2 sin ⁡ ( A + B 2 ) cos ⁡ ( A − B 2 ) 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) 2sin(2A+B)cos(2AB)
sin ⁡ A − sin ⁡ B \sin A-\sin B sinAsinB 2 cos ⁡ ( A + B 2 ) sin ⁡ ( A − B 2 ) 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) 2cos(2A+B)sin(2AB)
cos ⁡ A + cos ⁡ B \cos A+\cos B cosA+cosB 2 cos ⁡ ( A + B 2 ) cos ⁡ ( A − B 2 ) 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) 2cos(2A+B)cos(2AB)
cos ⁡ A − cos ⁡ B \cos A-\cos B cosAcosB − 2 sin ⁡ ( A + B 2 ) sin ⁡ ( A − B 2 ) -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) 2sin(2A+B)sin(2AB)

这些公式在三角函数积分、解方程及傅里叶分析中都有广泛应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值