LLama-v2 权重下载

地址:llama模型
官方github仓库:llama仓库

  • 注意点

    • 网络代理位置:美国
    • 下面的国家选择 United States
      示意图
  • 克隆仓库后

    • 运行bash download.sh
    • 输入邮箱收到的URL
    • 选择要下载的权重
    • 等待下载完成即可

有问题留言!!!

### LLaMA-Factory 支持的微调方式 LLaMA-Factory 是一个用于大模型训练和推理优化的工具集,它支持多种微调方法来适应不同的应用场景。以下是其支持的主要微调方式: 1. **LoRA (Low-Rank Adaptation)** LoRA 方法通过引入低秩分解矩阵的方式减少参数量并提高效率,在保持原模型性能的同时降低计算成本[^2]。 2. **P-Tuning 和 P-Tuning v2** 这些技术专注于 prefix tuning 的改进版本,允许仅更新少量新增加的向量而无需调整整个网络权重[^3]。 3. **Qwen 系列量化方案** 包括但不限于 `eetq`、`gptq`、`awq` 等在内的先进量化算法被集成到框架中以实现高效部署与运行时加速。 4. **DeepSpeed ZeRO 系列优化器** 利用 deepspeed 提供的大规模分布式训练能力以及内存管理策略如 Zero-Offload 技术提升大规模预训练模型的能力边界。 5. **BitsAndBytes 8-bit / 4-bit 训练支持** Bitsandbytes 库提供了高效的混合精度训练机制,使得即使是在资源受限环境下也能完成高质量的任务定制化需求。 6. **Hugging Face Transformers API 兼容性扩展** 用户可以方便地基于 huggingface transformers 构建自定义 pipeline 并应用上述提到的各种 fine-tune techniques 来满足特定业务场景下的要求。 7. **VLLM 高效推理引擎适配** VLLM 是一种专门为超大型语言模型设计的高性能推理解决方案,能够显著改善延迟敏感型服务的表现指标。 ```python # 示例代码展示如何安装必要组件以便于后续操作 !conda create --name llama_factory python=3.11 !pip install torch metrics deepspeed bitsandbytes eetq gptq awq aqlm vllm galore badam qwen modelscope quality ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值