工程数学基础概念

本文内容包括矢量,标量,点乘,叉乘,梯度,散度,旋度,复数的三种表现形式(笛卡尔,指数,极坐标),三种坐标系(笛卡尔,圆柱,球)及其对应的线路,面积,体积积分,拉普拉斯算子,散度定理,旋度定理

Scalar

不包含方向信息

Vector

包含方向信息

Dot product

点乘,输入两个矢量,得到一个标量,可以理解为一个向量在另一个向量上的投影

Cross product

叉乘,输入两个矢量,得到一个矢量,可以理解为求出同时垂直于两个向量的向量,方向由叉乘的顺序决定(右手定则)
关系可用三阶行列式记忆

Derivative

导数

Gradient

梯度,输入模型的标量,得到矢量,函数沿该向量变化率最大
关系

Divergence

散度,输入模型的矢量,得到标量,表示发散的强度(通源量密度)
关系

Curl

旋度,输入模型的矢量,得到矢量,表示旋转方向(右手定则,四指为旋转方向,拇指为旋度方向)和绕着这个旋转轴旋转的环量与旋转路径围成的面元的面积之比
关系

关系

namerealtionship
gradf∇f
divF∇ · F
curlF∇ × F

复数形式

1.笛卡尔

A = a + jb (a > 0, b > 0)

2.指数

A = Ae^jθ

3.极坐标

A = A∠θ

θ是线与x轴正方向的夹角

坐标系

1.笛卡尔

笛卡尔积分

2.圆柱

圆柱积分

3.球

球积分

对于不同坐标系的del

del

拉普拉斯算子

先对模型求梯度,得到一个矢量,再对该矢量求散度

#散度定理和旋度定理

1.散度定理

散度定理

2.旋度定理

旋度定理

线积分

1.路径有关

此处以计算做功为例: F ( r ) F(r) F(r)为在r处的力的函数,r为路线的函数
做功是 ∫ F ( r ) ⋅ d r ∫F(r)·dr F(r)dr,可以用一个参数t代替力和路径里的x,y,z,然后计算 ∫ F ( r ( t ) ) ⋅ r ( t ) d t ∫F(r(t))·r(t)dt F(r(t))r(t)dt
在起点和终点不变的情况下,路径的变换可能会导致积分结果不同

2.路径无关

这是线积分的一种特殊情况,下方的四条描述可以互相证明,满足任何一个描述即代表满足其它三条描述
F ( r ) ⋅ d r = F 1 d x + F 2 d y + F 3 d z F(r)·dr=F_1dx+F_2dy+F_3dz F(r)dr=F1dx+F2dy+F3dz在区域D内与路径无关
②某个f的梯度gradf等于F
③对区域D内的曲线C的路线积分等于0
④(如果D是单连通的)curlF = 0
单连通代表D的平面没有漏洞

路径无关的积分满足∫F®·dr = ∫gradf·dr = f(B) - f(A)
f的梯度为F,B是积分终点,A是积分起点

解路径积分

1.确定几个输入,即积分的起点A和终点B,积分的公式F(x,y,z),没有z则视为 0dz
2.求积分公式的旋度 ∇×F,如果结果为0,则证明此积分路径无关(也证明了可以找到梯度为F的公式f)
3.求f,方法是依次寻找x,y,z对各自偏导的积分
4.已知f对x的偏导是a,则可以通过a对x积分得到:∫a dx+g(y,z),g是一个未知方程
5.已知f对y的偏导是b,对∫a dx求对y的偏导,结果和b对比,得出g=原式+h(z),h(z)是一个未知方程
6.已知f对z的偏导是c,对f求对z的偏导,得出h(z)和最终的f (f会带有一个常数C)
7.最后,求f(B)-f(A)得出结果

面积分

Surface integral 可以被拆解为四步

  1. 找到面的参数方程r(u,v)
  2. 通过 N = r u × r v N=r_u\times r_v N=ru×rv找到面的法向量N,注意这里的N求出来方向不一定是正的,需要代入某个点来观察它的方向
  3. ∬FN dudv
  4. 代入FN

还有一种是 ∬ S G ( r ) d A = ∬ R G ( r ( u , v ) ) ∣ N ( u , v ) ∣ d u d v \iint_S G(r)dA=\iint_RG(r(u,v))|N(u,v)|dudv SG(r)dA=RG(r(u,v))N(u,v)dudv
和上面不同的只是得出 N N N之后的操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值