本文内容包括矢量,标量,点乘,叉乘,梯度,散度,旋度,复数的三种表现形式(笛卡尔,指数,极坐标),三种坐标系(笛卡尔,圆柱,球)及其对应的线路,面积,体积积分,拉普拉斯算子,散度定理,旋度定理
Scalar
不包含方向信息
Vector
包含方向信息
Dot product
点乘,输入两个矢量,得到一个标量,可以理解为一个向量在另一个向量上的投影
Cross product
叉乘,输入两个矢量,得到一个矢量,可以理解为求出同时垂直于两个向量的向量,方向由叉乘的顺序决定(右手定则)
Derivative
导数
Gradient
梯度,输入模型的标量,得到矢量,函数沿该向量变化率最大
Divergence
散度,输入模型的矢量,得到标量,表示发散的强度(通源量密度)
Curl
旋度,输入模型的矢量,得到矢量,表示旋转方向(右手定则,四指为旋转方向,拇指为旋度方向)和绕着这个旋转轴旋转的环量与旋转路径围成的面元的面积之比
name | realtionship |
---|---|
gradf | ∇f |
divF | ∇ · F |
curlF | ∇ × F |
复数形式
1.笛卡尔
A = a + jb (a > 0, b > 0)
2.指数
A = Ae^jθ
3.极坐标
A = A∠θ
θ是线与x轴正方向的夹角
坐标系
1.笛卡尔
2.圆柱
3.球
对于不同坐标系的del
拉普拉斯算子
先对模型求梯度,得到一个矢量,再对该矢量求散度
#散度定理和旋度定理
1.散度定理
2.旋度定理
线积分
1.路径有关
此处以计算做功为例:
F
(
r
)
F(r)
F(r)为在r处的力的函数,r为路线的函数
做功是
∫
F
(
r
)
⋅
d
r
∫F(r)·dr
∫F(r)⋅dr,可以用一个参数t代替力和路径里的x,y,z,然后计算
∫
F
(
r
(
t
)
)
⋅
r
(
t
)
d
t
∫F(r(t))·r(t)dt
∫F(r(t))⋅r(t)dt
在起点和终点不变的情况下,路径的变换可能会导致积分结果不同
2.路径无关
这是线积分的一种特殊情况,下方的四条描述可以互相证明,满足任何一个描述即代表满足其它三条描述
①
F
(
r
)
⋅
d
r
=
F
1
d
x
+
F
2
d
y
+
F
3
d
z
F(r)·dr=F_1dx+F_2dy+F_3dz
F(r)⋅dr=F1dx+F2dy+F3dz在区域D内与路径无关
②某个f的梯度gradf等于F
③对区域D内的曲线C的路线积分等于0
④(如果D是单连通的)curlF = 0
单连通代表D的平面没有漏洞
路径无关的积分满足∫F®·dr = ∫gradf·dr = f(B) - f(A)
f的梯度为F,B是积分终点,A是积分起点
解路径积分
1.确定几个输入,即积分的起点A和终点B,积分的公式F(x,y,z),没有z则视为 0dz
2.求积分公式的旋度 ∇×F,如果结果为0,则证明此积分路径无关(也证明了可以找到梯度为F的公式f)
3.求f,方法是依次寻找x,y,z对各自偏导的积分
4.已知f对x的偏导是a,则可以通过a对x积分得到:∫a dx+g(y,z),g是一个未知方程
5.已知f对y的偏导是b,对∫a dx求对y的偏导,结果和b对比,得出g=原式+h(z),h(z)是一个未知方程
6.已知f对z的偏导是c,对f求对z的偏导,得出h(z)和最终的f (f会带有一个常数C)
7.最后,求f(B)-f(A)得出结果
面积分
Surface integral 可以被拆解为四步
- 找到面的参数方程r(u,v)
- 通过 N = r u × r v N=r_u\times r_v N=ru×rv找到面的法向量N,注意这里的N求出来方向不一定是正的,需要代入某个点来观察它的方向
- ∬FN dudv
- 代入FN
还有一种是
∬
S
G
(
r
)
d
A
=
∬
R
G
(
r
(
u
,
v
)
)
∣
N
(
u
,
v
)
∣
d
u
d
v
\iint_S G(r)dA=\iint_RG(r(u,v))|N(u,v)|dudv
∬SG(r)dA=∬RG(r(u,v))∣N(u,v)∣dudv
和上面不同的只是得出
N
N
N之后的操作