对二阶电路的瞬态分析


之前我们聊到过一阶的电路简化后只含有电容或电感中的一个,那么二阶电路也很好理解,就是简化后电容和电感都有的电路
二阶电路一般有以下几种:

  1. 串联RLC电路
  2. 并联RLC电路
  3. RLL电路
  4. RCC电路

本文只讨论前两种

1. Natural response

这里的自然响应也与一阶相同,主要讨论的是将源移出电路后电容和电感的响应

1.1 Parallel RLC circuit

平行RLC电路,顾名思义,指的是电容,电阻,电感并联的电路,我们先看下面这张图
在这里插入图片描述
这是一般简化完成后的并联RLC电路,由一个电阻,一个电容和一个电阻构成

1.1.1 SODE (Second Order Differential Equation)

大多数情况下,我们需要找到v关于时间t的表达式,这就要用到二阶微分方程这个新工具了

假设每条支线上的电流如图所示,应用KVL,可以得到:
i R ( t ) + i L ( t ) + i C ( t ) = 0 i_R(t)+i_L(t)+i_C(t)=0 iR(t)+iL(t)+iC(t)=0
根据各个元件的性质,我们知道:
在这里插入图片描述
将电流的表达式代入,化简后得:
在这里插入图片描述
现在,我们得到了一个二阶微分方程,那么该如何解这个方程呢?
我们先假设这个方程的解是 A e s t Ae^{st} Aest的形式,也就是用 A e s t Ae^{st} Aest来替代我们想要求出的电压v,会得出特征方程(characteristic equation):
A s 2 e s t + 1 R C A s e s t + A L C e s t = 0 As^2e^{st}+\frac{1}{RC}Ase^{st}+\frac{A}{LC}e^{st}=0 As2est+RC1Asest+LCAest=0
这里的A和s是两个常数,A由起始状态决定,s由电路元件决定
等式两边同时除以 A e s t Ae^{st} Aest,得到:
在这里插入图片描述
将s视为未知数,解一元二次方程,可以得到两个根,分别为:
在这里插入图片描述
接下来,我们假设自然响应的表达式为:
在这里插入图片描述
得到表达式后,我们需要找到 A 1 , A 2 A_1, A_2 A1,A2,我们知道,两个未知量需要两个关系式才能解出,我们可以通过代入初始状态来找到这两个关系式

将t = 0+代入自然响应的表达式,可以得到第一个式子:
v n ( 0 + ) = A 1 + A 2 v_n(0^+)=A_1+A_2 vn(0+)=A1+A2
接下来,我们看自然响应对时间的微分:
d v n ( t ) d t = A 1 s 1 e s 1 t + A 2 s 2 e s 2 t \frac{dv_n(t)}{dt}=A_1s_1e^{s_1t}+A_2s_2e^{s_2t} dtdvn(t)=A1s1es1t+A2s2es2t
代入t = 0+,我们可以得到第二个式子
d v n ( 0 + ) d t = A 1 s 1 + A 2 s 2 \frac{dv_n(0^+)}{dt}=A_1s_1+A_2s_2 dtdvn(0+)=A1s1+A2s2
通过上述两个式子,我们可以解出 A 1 , A 2 A_1, A_2 A1,A2

1.1.2 Damping factor and damping systems

在1.1.1中,我们介绍了平行RLC电路的特征方程,但它看着还是有些复杂,于是人们又整了些幺蛾子来尝试简化它

定义共振频率(resonant frequency) ω 0 = 1 L C \omega_0=\frac{1}{\sqrt{LC}} ω0=LC 1
定义奈培频率(neper frequency) α = 1 2 R C \alpha=\frac{1}{2RC} α=2RC1,奈培频率也可以被称为指数衰减系数(exponential damping coefficient)

这样一来,特征方程就可以表达为:
s 2 + 2 α s + ω 0 2 = 0 s^2+2\alpha s+{\omega_0}^2=0 s2+2αs+ω02=0
s的两个根则可以写成: s 1 = − α + α 2 − ω 0 2 s_1=-\alpha+\sqrt{\alpha^2-{\omega_0}^2} s1=α+α2ω02

s 2 = − α − α 2 − ω 0 2 s_2=-\alpha-\sqrt{\alpha^2-{\omega_0}^2} s2=αα2ω02
这两个根也有了名字,叫做complex frequencies

自然响应表达式不变,仍是:
v n ( t ) = A 1 e s 1 t + A 2 e s 2 t v_n(t)=A_1e^{s_1t}+A_2e^{s_2t} vn(t)=A1es1t+A2es2t
这样的公式看起来,就比之前要清爽不少

现在,我们看回刚刚得到新名字的 s 1 , s 2 s_1, s_2 s1,s2, 这两个根的表达式中有一个项 α 2 − ω 0 2 \sqrt{\alpha^2-{\omega_0}^2} α2ω02 ,这个项的值决定了一个系统是过阻尼(over damped),临界阻尼(critical damped),还是欠阻尼(under damped),其判断方法如下:

  1. 过阻尼: α > ω 0 \alpha>\omega_0 α>ω0 s 1 , s 2 s_1, s_2 s1,s2是两个不相等的实数
  2. 临界阻尼: α = ω 0 \alpha=\omega_0 α=ω0 s 1 , s 2 s_1, s_2 s1,s2是两个相等的实数
  3. 欠阻尼: α < ω 0 \alpha<\omega_0 α<ω0 s 1 , s 2 s_1, s_2 s1,s2是两个复数: s 1 = − a + j ω 2 − α 2 s_1=-a+j\sqrt{\omega^2-\alpha^2} s1=a+jω2α2 , s 2 = − a − j ω 2 − α 2 s_2=-a-j\sqrt{\omega^2-\alpha^2} s2=ajω2α2 ,此时系统表现出震荡特性(oscillatory behaviour)

可以看出来,这就是二元一次方程判断根的思路,根据根的不同,可以知道一个系统的阻尼状态
这里,我们对三种阻尼的系统分别进行讨论

1.1.2.1 过阻尼系统

在过阻尼系统中, s 1 , s 2 s_1, s_2 s1,s2是两个实数, L > 4 R 2 C L>4R^2C L>4R2C
此时自然响应表达式为 v n ( t ) = A 1 e s 1 t + A 2 e s 2 t v_n(t)=A_1e^{s_1t}+A_2e^{s_2t} vn(t)=A1es1t+A2es2t
随时间变化的图像如下:
在这里插入图片描述
可以看出,随着 t → ∞ t\rightarrow\infty t v n ( t ) → 0 v_n(t)\rightarrow0 vn(t)0,电压峰值较小,但衰减较慢

1.1.2.2 临界阻尼系统

在临界阻尼系统中, s 1 , s 2 s_1, s_2 s1,s2是两个相等的实数, s 1 = s 2 = − a s_1=s_2=-a s1=s2=a,意味着 L = 4 R 2 C L=4R^2C L=4R2C
此时自然响应表达式为 v n ( t ) = e − α t ( A 1 t + A 2 ) v_n(t)=e^{-\alpha t}(A_1t+A_2) vn(t)=eαt(A1t+A2)
随时间变化的图像如下:
在这里插入图片描述
此时自然响应对时间的变化与过阻尼系统类似,随着 t → ∞ t\rightarrow\infty t v n ( t ) → 0 v_n(t)\rightarrow0 vn(t)0,电压峰值较高,衰减略快于过阻尼系统

1.1.2.3 欠阻尼系统

在欠阻尼系统中, s 1 , s 2 s_1, s_2 s1,s2是两个复数,意味着 L < 4 R 2 C L<4R^2C L<4R2C
s 1 = − a + j ω 2 − α 2 s_1=-a+j\sqrt{\omega^2-\alpha^2} s1=a+jω2α2
s 2 = − a − j ω 2 − α 2 s_2=-a-j\sqrt{\omega^2-\alpha^2} s2=ajω2α2
此时如果直接写出自然响应表达式会较为复杂,所以我们先设置几个量:
ω d = ω 0 2 − α 2 \omega_d=\sqrt{{\omega_0}^2-\alpha^2} ωd=ω02α2
A 1 + A 2 = B 1 A_1+A_2=B_1 A1+A2=B1
j ( A 1 − A 2 ) = B 2 j(A_1-A_2)=B_2 j(A1A2)=B2
这样表达式就逐步简化: v n ( t ) = e − α t ( A 1 e j ω d t + A 2 e j ω d t ) = e − α t [ ( A 1 + A 2 ) c o s ω d t + j ( A 1 − A 2 ) s i n ω d t ] v_n(t)=e^{-\alpha t}(A_1e^{j\omega_dt}+A_2e^{j\omega_dt})=e^{-\alpha t}[(A_1+A_2)cos\omega_dt+j(A_1-A_2)sin\omega_dt] vn(t)=eαt(A1ejωdt+A2ejωdt)=eαt[(A1+A2)cosωdt+j(A1A2)sinωdt]

最终表达式为:
v n ( t ) = e − α t ( B 1 c o s ω d t + B 2 s i n ω d t ) v_n(t)=e^{-\alpha t}(B_1cos\omega_dt+B_2sin\omega_dt) vn(t)=eαt(B1cosωdt+B2sinωdt)
由于 A 2 , A 2 A_2, A_2 A2,A2由初始状态决定, B 1 , B 2 B_1, B_2 B1,B2也是由初始状态决定的

自然响应随时间变化的图像如下:
在这里插入图片描述
可以看出电压峰值很高,但衰减也很快

1.2.3 电阻的作用

在RLC电路中,电感和电容可以储存能量,电阻可以消耗能量,那么有没有办法让电路中储存的能量不被消耗呢?事实上,只要我们让电路中的 R → ∞ R\rightarrow\infty R,就会出现无阻尼的情况,从而实现极低的能量消耗,在现实中,一个非常大的电阻可以让电路中的能量存储好几年。

1.2.4 RLC 电路小结

现在,我们简单总结一下分析RLC电路的流程

  1. 找到SODE d 2 v d t 2 + 1 R C d v d t + 1 L C v = 0 \frac{d^2v}{dt^2}+\frac{1}{RC}\frac{dv}{dt}+\frac{1}{LC}v=0 dt2d2v+RC1dtdv+LC1v=0
  2. 根据电路元件,算出 ω 0 = 1 L C \omega_0=\frac{1}{\sqrt{LC}} ω0=LC 1, α = 1 2 R C \alpha=\frac{1}{2RC} α=2RC1,判断系统阻尼
  3. 根据不同的系统,用特征方程和特征方程对时间的微分代入初始状态来找到系数,如果是过阻尼或临界阻尼系统,找 A 1 , A 2 A_1, A_2 A1,A2, 如果是欠阻尼系统,则找 B 1 , B 2 B_1, B_2 B1,B2

1.2 Series RLC circuit

与并联RLC电路相对的是串联RLC电路,标准电路图如下:
在这里插入图片描述

1.2.1 SODE

和并联RLC电路一样,我们需要找到电路对应的二阶微分方程,过程如下:
根据串联RLC电路的电路图,流通的电流可以表示为
在这里插入图片描述
得到电流i的表达式后,电阻电压可以表示为:
在这里插入图片描述
电感电压可以表示为:
在这里插入图片描述
对整个电路应用KVL,可以得到下列关系式:
在这里插入图片描述
注意,这个电路是一个有源电路,电容器的电压 v c v_c vc需要分成两部分来考虑:
v C = v C , p + v C , h v_C=v_{C,p}+v_{C,h} vC=vC,p+vC,h
其中 v C v_C vC被称为完全解(complete solution)
v C , p v_{C,p} vC,p被称为特解(particular solution)
v C , h v_{C,h} vC,h被称为齐次解(homogenous solution)

对于无源电路, v S = 0 v_S=0 vS=0,我们也只需要考虑 v C , h v_{C,h} vC,h,此时表达式为:
在这里插入图片描述
同样的,我们可以将电压用 A e s t ( A ≠ 0 ) Ae^{st}(A\not=0) AestA=0的形式表达出来,得出:
在这里插入图片描述
消去 A e s t Ae^{st} Aest后,我们得到最终的特征方程为:
在这里插入图片描述
同样的,我们可以用奈培频率和共振频率表达特征方程及它的根 s 1 , s 2 s_1, s_2 s1,s2
在串联RLC电路中
共振频率为 ω 0 = 1 L C \omega_0=\frac{1}{\sqrt{LC}} ω0=LC 1
奈培频率为 α = R 2 L \alpha=\frac{R}{2L} α=2LR

与平行RLC电路一样,我们可以根据奈培频率和共振频率的大小关系来判断阻尼,对应关系如下:

  1. 过阻尼: α > ω 0 \alpha>\omega_0 α>ω0 s 1 , s 2 s_1, s_2 s1,s2是两个不相等的实数
  2. 临界阻尼: α = ω 0 \alpha=\omega_0 α=ω0 s 1 , s 2 s_1, s_2 s1,s2是两个相等的实数
  3. 欠阻尼: α < ω 0 \alpha<\omega_0 α<ω0 s 1 , s 2 s_1, s_2 s1,s2是两个复数: s 1 = − a + j ω 2 − α 2 s_1=-a+j\sqrt{\omega^2-\alpha^2} s1=a+jω2α2 , s 2 = − a − j ω 2 − α 2 s_2=-a-j\sqrt{\omega^2-\alpha^2} s2=ajω2α2 ,此时系统表现出震荡特性(oscillatory behaviour)

三种阻尼下的自然响应表达式也与平行电路相同:

  1. 过阻尼: v C , h ( t ) = A 1 e s 1 t + A 2 e s 2 t v_{C,h}(t)=A_1e^{s_1t}+A_2e^{s_2t} vC,h(t)=A1es1t+A2es2t
  2. 临界阻尼: v C , h ( t ) = e − α t ( A 1 t + A 2 ) v_{C,h}(t)=e^{-\alpha t}(A_1t+A_2) vC,h(t)=eαt(A1t+A2)
  3. 欠阻尼: v C , h ( t ) = e − α t ( B 1 c o s ω d t + B 2 s i n ω d t ) v_{C,h}(t)=e^{-\alpha t}(B_1cos\omega_dt+B_2sin\omega_dt) vC,h(t)=eαt(B1cosωdt+B2sinωdt),其中 ω d = ω 0 2 − α 2 \omega_d=\sqrt{{\omega_0}^2-\alpha^2} ωd=ω02α2

1.2.2 Step of solving SODE questions

现在我们详细看一下解SODE的流程

  1. 确定电路的三个值R,L,C,得到表达式: s 2 + R L s + 1 L C = 0 s^2+\frac{R}{L}s+\frac{1}{LC}=0 s2+LRs+LC1=0
  2. 解方程,得到 s 1 , s 2 s_1, s_2 s1,s2
  3. 根据R,L,C得到 α , ω 0 \alpha,\omega_0 α,ω0 α = R 2 L \alpha=\frac{R}{2L} α=2LR ω 0 = 1 L C \omega_0=\frac{1}{\sqrt{LC}} ω0=LC 1,判断出该电路的阻尼,对于欠阻尼电路还需求出 ω d = ω 0 2 − α 2 \omega_d=\sqrt{{\omega_0}^2-\alpha^2} ωd=ω02α2
  4. 根据阻尼确定 v C , h ( t ) v_{C,h}(t) vC,h(t)的表达式
  5. 找到电路初始状态下的电容电压 v C ( 0 + ) v_C(0^+) vC(0+)和电路电流 i L ( 0 + ) i_L(0^+) iL(0+)
  6. 根据第五步找到的参数,我们可以列出两个等式: v C , h ( 0 ) = v C ( 0 ) v_{C,h}(0)=v_C(0) vC,h(0)=vC(0), d v C ( 0 ) d t = i L ( 0 + ) C \frac{dv_C(0)}{dt}=\frac{i_L(0^+)}{C} dtdvC(0)=CiL(0+)
  7. 上面两个等式可以帮我们解出 A 1 , A 2 A_1, A_2 A1,A2,对于欠阻尼电路则是 B 1 , B 2 B_1, B_2 B1,B2
  8. 根据 A 1 , A 2 A_1, A_2 A1,A2 s 1 , s 2 s_1, s_2 s1,s2列出电路响应的最终表达式 v C , h ( t ) v_{C,h}(t) vC,h(t) i L ( t ) i_L(t) iL(t)

1.3 Comparison between parallel and series RLC circuits

在这里插入图片描述

2. Step response

无源电路中,我们只需要考虑自然响应,但如果电路中一直有源存在,我们就还需要考虑阶跃响应,将自然响应与阶跃响应结合,我们才能得到完整的响应

一般来讲,阶跃响应的推导分为以下几个步骤:

  1. 确定初始状态
  2. 获得强制响应的数值
  3. s 1 , s 2 s_1,s_2 s1,s2,判断阻尼状态,写出对应的含A的自然响应的表达式
  4. 将自然响应与强制响应相加来得到完整响应
  5. 求完整响应在t=0时对t的导数,代入初始状态来求得 A 1 , A 2 A_1,A_2 A1,A2 B 1 , B 2 B_1,B_2 B1,B2

2.1 Parallel RLC circuit

在这里插入图片描述
下图是一个有源电路,在做KCL时,关系式会与无源时略有不同:
在这里插入图片描述
经过与无源电路类似的计算,我们可以得到完整响应的关系式:
在这里插入图片描述
我们发现,完整响应中的自然响应与无源电路中是一摸一样的,强制响应则等于 t → ∞ t\rightarrow\infty t时的电流???,这里就是电源电流 i s i_s is

这样看来,求有源电路响应的方法和无源电路几乎是一样的,只要在原来的基础上加上一个电流就好了
真的有这么简单吗?就是这么简单,不过有一点需要注意,当我们代入t=0的初始值来求 A 1 , A 2 A_1,A_2 A1,A2时,不要忘了关系式中应该包含 i s i_s is,这也是我们把 A 1 , A 2 A_1, A_2 A1,A2放到最后一步来求的原因

2.2 Series RLC circuit

串联RLC电路的性质和并联也是一个模子刻出来的,只不过强制响应从电流 i s i_s is变成了 t → ∞ t\rightarrow\infty t时的电容电压

3. General Second Order Circuit

之前我们讨论的都是标准二阶电路, ω 0 , α \omega_0, \alpha ω0,α都可以直接通过公式求出,然而如果遇到其它类型的二阶电路,这些公式就不能直接套用了,我们需要从最开始根据KVL,KCL一步步分析,从而得到自然响应和强制响应,这里仅作了解。

4. Automobile Ignition Circuit

汽车点火电路是二阶电路瞬态分析的一个应用场景

  • 5
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值