三重积分与高斯散度定理

工程数学 专栏收录该内容
5 篇文章 0 订阅

高斯散度定理实际上是更宏观的格林定理,格林定理主要是在二维平面上应用,而高斯散度定理则可以应用在三维空间中

其核心思想如下,假设我们有一个向量场,其表达式为F,这个向量场中有一个体积为V的物体,物体的表平面为A,物体向外的单位法向量为n
高斯散度定理,描述的就是物体内部向量场散度与表面上通量的关系
也就是说,我们知道了一个物体内部向量场的散度,就可以推断出表面上的通量,反之亦然。
这在电磁分析中非常有用,因为电磁场都属于向量场

高斯散度定理公式如下:
∭ T d i v F d V = ∬ S F ⋅ n d A \iiint_TdivFdV=\iint_SF\cdot ndA TdivFdV=SFndA

也可以写成另一种形式:
∭ T ( ∂ F 1 ∂ x + ∂ F 2 ∂ y + ∂ F 3 ∂ z ) d V = ∬ S ( F 1 d y d z + F 2 d x d z + F 3 d x d y ) \iiint_T(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z})dV=\iint_S(F_1dydz+F_2dxdz+F_3dxdy) T(xF1+yF2+zF3)dV=S(F1dydz+F2dxdz+F3dxdy)

一般来说,如果需要计算右边的式子,需要先将物体用参数u, v表达,用 r u , r v r_u,r_v ru,rv求出法向量,再计算
∬ R F ( r ( u , v ) ) ⋅ N ( u , v ) d u d v \iint_RF(r(u,v))\cdot N(u,v)dudv RF(r(u,v))N(u,v)dudv

  • 1
    点赞
  • 5
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

来自 https://download.csdn.net/download/yangjunbuaa/10157766 细化到三级书签,进行过OCR,保留高清图片 上传时间:2019/3/2 文件大小:32.026Mb Contents •----封面 •----序 •----目录 •----第十五章 曲线积分•斯蒂尔切斯积分 --------§1.第一型曲线积分 ------------543.第一型曲线积分的定义 ------------544.约化为普通定积分 ------------545.例 --------§2.第二型曲线积分 ------------546.第二型曲线积分的定义 ------------547.第二型曲线积分的存在计算 ------------548.闭路的情形•平面的定向 ------------549.例 ------------550.用取在折线上的积分的逼近 ------------551.用曲线积分计算面积 ------------552.例 ------------553.两不同型曲线积分间的联系 ------------554.物理问题 --------§3.曲线积分道路无关的条件 ------------555.全微分相关问题的提 ------------556.道路无关积分的微分法 ------------557.用原函数来计算曲线积分 ------------558.恰当微分的判别在矩形区域的情况下原函数的求 ------------559.推广到任意区域的情形 ------------560.最终结 ------------561.沿闭路的积 ------------562.非单连通区域或有奇点的情 ------------563.高斯积分 ------------564.三维的情形 ------------565.例 ------------566.物理问题的应用 --------§4.有界变差函数 ------------567.有界变差函数的定义 ------------568.有界变差函数类 ------------569.有界变差函数的性质 ------------570.有界变差函数的判定法 ------------571・连续的有界变差函数 ------------572.可求长曲线 --------§5.斯蒂尔切斯积分 ------------573.斯蒂尔切斯积分的定义 ------------574.斯蒂尔切斯积分存在的一般条 ------------575·斯蒂尔切斯积分存在的若干种情况 ------------576.斯蒂尔切斯积分的性质 ------------577.分部积分法 ------------578.化斯蒂尔切斯积分为黎曼积分 ------------579.斯蒂尔切斯积分的计算 ------------580.例 ------------581.斯蒂尔切斯积分的几何说明 ------------582.中值定理,估计值 ------------583.斯蒂尔切斯积分记号下面的极限过程 ------------584.例题及补充 ------------585.化第二型曲线积分为斯蒂尔切斯积分 •----第十六章 二重积分 --------§1.二重积分的定义及简单性质 ------------586.柱形长条体积的问题 ------------587.化二重积分为逐次积分 ------------588.二重积分的定义 ------------589.二重积分存在的条件 ------------590.可积函数类 ------------591.下积分及上积分作为极限 ------------592.可积函数重积分的性质 ------------593.积分当作区域的可加函数,对区域的微分法 --------§2.二重积分的计算 ------------594.在矩形区域的情况下化二重积分为逐次积分 ------------595.例 ------------596.在曲边区域的情况下化二重积分为逐次积分 ------------597.例 ------------598.力学应用 ------------599.例 --------§3.格林公式 ------------600.格林公式的推演 ------------601.应用格林公式到曲线积分的研究 ------------602.例题及补充 --------§4.二重积分中的变量变换 ------------603.平面区域的变换 ------------604.例 ------------605.曲线坐标中面积的表示法 -----------
©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值