【概率论基础进阶】随机变量的数字特征-随机变量的数学期望和方差

数学期望

离散型随机变量的数学期望

设随机变量 X X X的概率分布为
P { X = x k } = p k , k = 1 , 2 , ⋯ P \left\{X=x_{k}\right\}=p_{k},k=1,2,\cdots P{ X=xk}=pk,k=1,2,
如果级数 ∑ k = 1 + ∞ x k p k \sum\limits_{k=1}^{+\infty}x_{k}p_{k} k=1+xkpk绝对收敛,则称为级数随机变量 X X X的数学期望或均值,记作 E ( X ) E(X) E(X),即
E ( X ) = ∑ k = 1 + ∞ x k p k E(X)=\sum\limits_{k=1}^{+\infty}x_{k}p_{k} E(X)=k=1+xkpk

连续型随机变量的数学期望

设随机变量 X X X的概率密度为 f ( x ) f(x) f(x),如果积分 ∫ − ∞ + ∞ x f ( x ) d x \begin{aligned} \int_{-\infty}^{+\infty}xf(x)dx\end{aligned} +xf(x)dx绝对收敛,则称此积分为随机变量 X X X的数学期望或均值,记作 E ( X ) E(X) E(X),即
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx

例1:设随机变量 X X X的概率密度 f ( x ) = { x n n ! e − x x > 0 0 x ≤ 0 f(x)=\left\{\begin{aligned}&\frac{x^{n}}{n!}e^{-x}&x>0\\&0&x \leq 0\end{aligned}\right. f(x)= n!xnex0x>0x0,求 E X EX EX

∫ − ∞ + ∞ f ( x ) d x = ∫ 0 + ∞ x n n ! e − x d x = 1 ⇒ ∫ 0 + ∞ x n e − x d x = n ! \int_{-\infty}^{+\infty}f(x)dx=\int_{0}^{+\infty}\frac{x^{n}}{n!}e^{-x}dx=1 \Rightarrow \int_{0}^{+\infty}x^{n}e^{-x}dx=n! +f(x)dx=0+n!xnexdx=10+xnexdx=n!

其实在二维均匀分布和二维正态分布也证明过 ∫ 0 + ∞ x n e − x = n ! \begin{aligned} \int_{0}^{+\infty}x^{n}e^{-x}=n!\end{aligned} 0+xnex=n!

E X = ∫ − ∞ + ∞ x f ( x ) d x = ∫ 0 + ∞ x ⋅ x n n ! e − x d x = 1 n ! ∫ 0 + ∞ x n + 1 e − x d x = ( n + 1 ) ! n ! = n + 1 \begin{aligned} EX=\int_{-\infty}^{+\infty}xf(x)dx &=\int_{0}^{+\infty}x \cdot \frac{x^{n}}{n!}e^{-x}dx\\ &=\frac{1}{n!}\int_{0}^{+\infty}x^{n+1}e^{-x}dx\\ &=\frac{(n+1)!}{n!}=n+1 \end{aligned} EX=+xf(x)dx=0+xn!xnexdx=n!10+xn+1exdx=n!(n+1)!=n+1

性质

  • C C C是常数,则有 E ( C ) ≡ C E(C) \equiv C E(C)C
  • X X X是随机变量, C C C是常数,则有 E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
  • X X X Y Y Y是任意两个随机变量,则有 E ( X ± Y ) = E ( X ) ± E ( Y ) E(X \pm Y)=E(X) \pm E(Y) E(X±Y)=E(X)±E(Y)
  • 设随机变量 X X X Y Y Y相互独立,则有 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

例1:设随机变量 X X X的密度为 f ( x ) f(x) f(x),数学期望 E ( X ) = 0 E(X)=0 E(X)=0,说明 ∫ 0 + ∞ x [ f ( x ) − f ( − x ) ] d x = 0 \begin{aligned} \int_{0}^{+\infty}x[f(x)-f(-x)]dx=0\end{aligned} 0+x[f(x)f(x)]dx=0</

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值