图卷积神经网络GCN

1. 基础知识

1.1 Spatial Domain(空间/拓扑域)和Spectral Domain(谱域)

1.2 拉普拉斯矩阵

1.2.1 定义

对于图 G = ( V , E ) G=(V,E) G=(V,E), 其Laplacian矩阵的定义为 L = D − A L=D-A L=DA, 其中 L L L是Laplacian矩阵, D D D是定点的度矩阵(对角矩阵), A A A是图的邻接矩阵。
在这里插入图片描述
常用的拉普拉斯矩阵有三种:

  1. L = D − A L=D-A L=DA 定义名为 Combinatorial Laplacian
  2. L s y s = D − 1 / 2 L D − 1 / 2 L^{sys} = D^{-1/2}LD^{-1/2} Lsys=D1/2LD1/2 定义为Symmetric normalized Laplacian, 很多GCN论文中用这种。
  3. L r w = D − 1 L L^{rw} = D^{-1}L Lrw=D1L 定义Random warl normalized Laplacian

1.2.2 拉普拉斯矩阵作用

  1. 拉普拉斯矩阵是对称矩阵,可以进行特征分解(谱分解)。
  2. 拉普拉斯矩阵只有在中心顶点和一阶相连的顶点上有非0元素。
  3. 通过拉普拉斯算子与拉普拉斯矩阵进行类比。???

1.2.3 拉普拉斯矩阵的谱分解(特征分解)

GCN的核心是基于拉普拉斯矩阵的谱分解。
首先对基本的理论进行解释

  1. 矩阵的谱分解、特征分解、对角化是同一个概念。
  2. 不是所有的矩阵都可以进行特征分解,充要条件是n阶方阵有n个线性无关的特征向量。
  3. 拉普拉斯矩阵是半正定对称矩阵。半正定矩阵的三个性质:
    a. 实对称矩阵一定n个线性无关的特征向量。
    b. 半正定矩阵的特征值一定非负。
    c. 实对称矩阵的特征向量总是可以化为两两相互正交的正交矩阵

拉普拉斯矩阵的谱分解:
L = U ( λ 1 ⋱ λ n ) U − 1 L=U \left(\begin{matrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \\\end{matrix}\right) U^{-1} L=Uλ1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值