摄像机几何模型

一、透视投影相机模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最终得到摄像机坐标系下,空间中的点 P P P和数字图像上的点 P ′ P' P的映射关系:
P = ( x , y , z ) — — > P ′ = ( α x z + c x , β y z + c y ) P=(x,y,z)——>P'=(\alpha\frac{x}{z}+c_x,\beta\frac{y}{z}+c_y) P=xyz>P=αzx+cx,βzy+cy

将此映射关系转换成线性映射的形式:

齐次坐标:

在这里插入图片描述
在这里插入图片描述
P ′ P' P的欧氏坐标转换成齐次坐标形式 P h ′ P_h' Ph,可以发现, P h ′ P_h' Ph与P点的齐次坐标 P h P_h Ph有一定关系。( P h P_h Ph经由一个全由相机相关参数组成的矩阵的变换后,得到 P h ′ P_h' Ph

在齐次坐标的形式下,可将空间中的点 P P P和数字图像上的点 P ′ P' P之间建立一个线性映射的关系:
在这里插入图片描述
其中, M M M称作投影矩阵。

在这里插入图片描述
在这里插入图片描述
摄像机内参数矩阵的自由度:只有 α , β , θ , c x , c y \alpha,\beta,\theta,c_x,c_y αβθcxcy五个变量,因此K有5个自由度。

但在摄像机坐标系来描述空间中的点并不方便,如不同摄像机下,坐标系也不同,空间中的点的坐标也会不同。

因此需要一个绝对客观的坐标系——世界坐标系。

假如能完成世界坐标系到摄像机坐标系的转换,经由上文的关系,就能完成世界坐标系到数字图像坐标的转换。

在这里插入图片描述
假设摄像机坐标系是由世界坐标系经过旋转平移R,T得到的,则齐次坐标系下:
P = [ R T 0 1 ] P w P=\left[ \begin{matrix} R&T\\0&1\end{matrix}\right]P_w P=[R0T1]Pw
其中, P w P_w Pw是世界坐标系的齐次坐标, P w = [ x w y w z w 1 ] P_w=\left[\begin{matrix}x_w\\y_w\\z_w\\1\end{matrix}\right] Pw=xwywzw1

以上,将世界坐标系下的点转换成了摄像机坐标系下的点。





在这里插入图片描述
内部参数决定了摄像机的点到数字图像上的点的映射
外部参数决定了摄像机和世界之间的关系
最终完成了世界坐标系下的点 P w P_w Pw到数字图像上的点 P ′ P' P的映射关系

此时的投影矩阵 M ( 3 × 4 ) M(3\times4) M(3×4),具有摄像机内参数矩阵 K K K的5个自由度, R R R绕三个坐标轴旋转的3个自由度, T T T沿三个坐标轴移动的3个自由度,因此M总共有11个自由度。

P ′ = [ m 1 m 2 m 3 ] P w P'=\left[ \begin{matrix}m_1\\m_2\\m_3\end{matrix}\right]P_w P=m1m2m3Pw
此时 P ′ P' P是齐次坐标形式,转换成欧氏坐标形式:
( m 1 P w m 3 P w , m 2 P 2 m 3 P w ) (\frac{m_1P_w}{m_3P_w},\frac{m_2P_2}{m_3P_w}) (m3Pwm1Pw,m3Pwm2P2)








二、弱透视投影相机模型

在这里插入图片描述

P、Q、R三点与成像孔之间的距离是不一样的,但三个点距离成像孔足够远时,三点与成像孔之间的距离的差异性可以忽略不计,即假设三点在同一平面上。
在这里插入图片描述
在这里插入图片描述
此时 z z z成了固定值 z 0 z_0 z0,通常取三点的 z z z的均值为 z 0 z_0 z0








三、正交投影相机模型

在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值