【CV论文精读】【协同感知综述】Collaborative Perception for Autonomous Driving :Current Status and Future Trend

Collaborative Perception for Autonomous Driving :Current Status and Future Trend
在这里插入图片描述

0.论文摘要

感知是自动驾驶系统的关键模块之一,近年来取得了很大进展。然而,单个车辆的有限能力导致感知性能提高的瓶颈。为了突破个体感知的局限,协作感知被提出,它使车辆能够共享信息来感知视线和视野之外的环境。本文综述了有前途的协作感知技术的相关工作,包括介绍了基本概念,概括了协作模式,总结了协作感知的关键要素和应用。最后,我们讨论了这一研究领域面临的挑战和问题,并给出了一些潜在的进一步方向。

1.Introduction and Motivation

自动驾驶是智能交通系统的关键技术,也是一个很有前途的工程项目,可以从根本上改变人类社会的生活。虽然过去几十年学术界和工业界都取得了很大进展,但自动驾驶仍然是当今一个重要的研究课题,尤其是受到最近计算机视觉和深度学习发展的启发。自动驾驶的关键模块之一是感知,其目标是感知周围环境并提取与导航相关的信息,包括目标检测、跟踪、语义分割等。感知曾经被认为是自动驾驶的技术瓶颈。在过去的几年里,随着大规模训练数据的增加和深度学习算法的发展,感知性能得到了显著提高。然而,这不足以满足实际高水平自主能力的需求,因为高水平或完全自主的车辆不需要人的监督,完全依赖于车辆的感知。

制约自动驾驶感知性能的一个主要因素是每辆车基于自身的局部感知周围环境感知传感器,即个体感知。然而,个体的感知能力是有限的,因此感知会因有限的视野、模态缺失、稀疏的传感器数据和其他负面因素而降低。图1显示了个体感知的两个重要问题,即长期的遮挡和稀疏数据。解决这些问题的方法是在同一区域内的车辆彼此共享集体感知信息(CPM)来协作感知环境,这被称为协作感知或合作感知。

在这里插入图片描述
受益于通信基础设施的更好建设和通信技术的发展,如V2X(车辆到一切)通信,车辆可以以可靠的方式交换它们的信息,这使得它们之间的协作成为可能。最近的工作[11,12]表明,车辆之间的协作感知可以提高环境感知的准确性以及交通系统的鲁棒性和安全性。此外,自动驾驶汽车通常配备高保真传感器以实现可靠的感知,这导致成本昂贵。协同感知可以放松对单个车辆感知设备的苛刻要求。协作感知通过与附近的车辆和基础设施共享信息,使自动驾驶汽车能够克服一些感知限制,如遮挡和短距离视野。然而,实现实时和鲁棒的协作感知需要解决由通信容量和噪声引起的一些挑战。最近,有一些研究合作感知策略的工作,包括合作什么,何时合作,如何合作,共享信息的对齐等等。

在本文中,我们回顾了以前关于自动驾驶的协作感知的工作。本文的主要贡献如下:1)归纳了现有的协作感知模式,并对各自的方法进行了分析;2)总结了自动驾驶的协作感知的关键要素,并介绍每种成分各自的研究。iii)

### 关于 FourierKAN-GCF 的详细介绍 FourierKAN-GCF 是一种基于傅里叶变换和 Kolmogorov-Arnold 表达定理的特征转换网络,旨在提升图协同过滤 (Graph Collaborative Filtering, GCF) 中的性能[^1]。该模型通过引入高效的特征转换机制,在处理大规模推荐系统的稀疏性和噪声方面表现出显著优势。 #### 方法概述 FourierKAN-GCF 结合了傅里叶分析与神经网络架构的设计理念,其核心在于利用傅里叶级数分解来捕捉高维空间中的复杂模式,并将其映射到低维表示中[^2]。这种方法不仅能够有效减少计算开销,还能够在保持表达能力的同时增强模型的泛化性能。 以下是 FourierKAN-GCF 的主要组成部分: 1. **傅里叶特征提取模块**: 借助傅里叶变换的能力,FourierKAN-GCF 能够将原始输入数据投影至频域,从而更好地分离信号的主要成分与次要成分。这一过程有助于降低噪声干扰并突出重要特征。 2. **Kolmogorov-Arnold 映射层**: 利用 Kolmogorov-Arnold 定理的核心思想,即任何连续函数都可以被近似为若干一元函数的组合形式,FourierKAN-GCF 构建了一种分而治之的学习策略。这种设计使得模型可以高效地逼近复杂的非线性关系。 3. **图卷积操作优化**: 针对传统 GCN 存在的信息传播瓶颈问题,FourierKAN-GCF 提出了改进版的消息传递机制,允许节点间更灵活地交换信息。这一步骤对于提高推荐质量至关重要。 #### 技术实现细节 为了便于实际应用,研究人员提供了完整的开源代码库以及详细的实验配置说明。以下是一个简化版本的 Python 实现框架: ```python import torch from torch_geometric.nn import MessagePassing class FourierKANLayer(MessagePassing): def __init__(self, input_dim, output_dim): super(FourierKANLayer, self).__init__() self.linear = torch.nn.Linear(input_dim, output_dim) def forward(self, x, edge_index): return self.propagate(edge_index=edge_index, size=None, x=x) def message(self, x_j): # 应用傅里叶变换或其他预定义的操作 fourier_transformed_x = ... # 自定义逻辑 return fourier_transformed_x # 使用示例 model = FourierKANLayer(input_dim=128, output_dim=64) output_features = model(x=input_data, edge_index=adjacency_matrix) ``` 上述代码片段展示了如何构建一个基础的 FourierKAN 层结构,并通过 PyTorch Geometric 工具包实现了消息传递功能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子-Alex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值