UA MATH563 概率论的数学基础 鞅论初步8 鞅收敛定理

UA MATH563 概率论的数学基础 鞅论初步8 鞅收敛定理

上一讲我们定义了停时,并引入了鞅收敛定理,这一讲我们完成鞅收敛定理的证明,并完成上一讲的例题。

鞅收敛定理 假设 { X n } \{X_n\} { Xn}是一个 { F n } \{\mathcal{F}_n\} { Fn}上的submartingale,且满足 sup ⁡ n E X n + < ∞ \sup_n EX_n^+<\infty supnEXn+<,则 X n → X , a . s X_n \to X,a.s XnX,a.s,并且 E ∣ X ∣ < ∞ E|X|<\infty EX<

推论 如果 X n X_n Xn是一个非负supermartingale,则 X n → X X_n\to X XnX a.s. 并且 E X ≤ E X 0 EX \le EX_0 EXEX0

证明

第一部分:我们先假设鞅收敛定理成立,然后论述推论。

如果 X n X_n Xn是一个非负supermartingale,则 − X n -X_n Xn是一个submartingale,并且因为 X n ≥ 0 X_n \ge 0 Xn0, 则 ( − X n ) + = 0 (-X_n)^+=0 (Xn)+=0,所以 sup ⁡ n E [ ( − X n ) + ] = 0 < ∞ \sup_nE[(-X_n)^+]=0<\infty supnE[(Xn)+]=0<, 根据鞅收敛定理, − X n → Y -X_n \to Y XnY a.s., ∃ Y \exists Y Y such that E ∣ X ∣ < ∞ E|X|<\infty EX<。根据supermartingale的性质,
E [ X 0 ] ≥ E [ X n ] , ∀ n E[X_0] \ge E[X_n],\forall n E[X0]E[Xn],n

因此根据Fatou引理
E [ X 0 ] ≥ lim inf ⁡ E [ X n ] ≥ E [ lim inf ⁡ X n ] = E [ lim ⁡ X n ] = E [ X ] E[X_0] \ge \liminf E[X_n] \ge E[\liminf X_n]=E[\lim X_n]=E[X] E[X0]liminfE[Xn]E[liminfXn]=E[limXn]=E[X]

第二部分:证明鞅收敛定理中几乎必然收敛的部分。

先回顾一下证明过程中需要的结果
Doob’s inequality (Upcrossing Inequality) 假设 { X n } \{X_n\} { Xn}是一个 { F n } \{\mathcal{F}_n\} { Fn}上的submartingale, a < b a<b a<b N 0 = − 1 N_0=-1 N0=1,
N 1 = inf ⁡ { m > N 0 : X m ≤ a } N 2 = inf ⁡ { m > N 1 : X m ≥ b } ⋯ N 2 k − 1 = inf ⁡ { m > N 2 k − 2 : X m ≤ a } N 2 k = inf ⁡ { m ≥ N 2 k − 1 : X m ≥ b } N_1=\inf\{m>N_0:X_m \le a\} \\ N_2 = \inf\{m >N_1:X_m \ge b\} \\ \cdots \\ N_{2k-1} = \inf\{m>N_{2k-2}:X_m \le a\} \\ N_{2k} = \inf\{m \ge N_{2k-1}:X_m \ge b\} N1=inf{ m>N0:Xm

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值