随机过程学习笔记03 鞅

本文介绍了随机过程中的重要概念——鞅,包括其定义、分解定理、测度变换和Girsanov定理、选样定理及Doob停时定理。通过具体的例子和定理证明,阐述了鞅在概率论和随机过程理论中的应用。
摘要由CSDN通过智能技术生成

定义

( X t ) t ∈ T (X_t)_{t\in T} (Xt)tT ( Ω , F , ( F t ) t ∈ T , P ) (\Omega,\mathscr{F},(\mathscr{F}_{t})_{t\in T},P) (Ω,F,(Ft)tT,P)上关于 ( F t ) t ∈ T (\mathscr{F}_t)_{t\in T} (Ft)tT适应的随机过程【“适应”的定义见随机过程学习笔记02 条件数学期望】,若 ∀ s < t \forall s<t s<t E [ X t ∣ F s ] = X s \mathbb{E}[X_t|\mathscr{F}_{s}]=X_s E[XtFs]=Xs,则称 ( X t ) t ∈ T (X_t)_{t\in T} (Xt)tT ( F t ) t ∈ T (\mathscr{F}_t)_{t\in T} (Ft)tT鞅(martingale) ,或称 ( X t , F t ) t ∈ T (X_t,\mathscr{F}_t)_{t\in T} (Xt,Ft)tT。若 T = { 1 , 2 , …   } T=\{1,2,\dots\} T={ 1,2,} ( X t ) t ∈ T (X_t)_{t\in T} (Xt)tT称为鞅列。若 E [ X t ∣ F s ] ≥ X s \mathbb{E}[X_t|\mathscr{F}_s]\ge X_s E[XtFs]Xs,则称 ( X t , F t ) t ∈ T (X_t,\mathscr{F}_t)_{t\in T} (Xt,Ft)tT下鞅(submartingle)。若 E [ X t ∣ F s ] ≤ X s \mathbb{E}[X_t|\mathscr{F}_s]\le X_s E[XtFs]Xs,则称 ( X t , F t ) t ∈ T (X_t,\mathscr{F}_t)_{t\in T} (Xt,Ft)tT上鞅(subermartingale)

例1 ( ξ n ) n ≥ 1 (\xi_n)_{n\ge1} (ξn)n1关于 ( F n ) n ≥ 1 (\mathscr{F}_n)_{n\ge1} (Fn)n1适应(可知),定义 ζ n = ξ n − ∑ k = 0 n − 1 ( E [ ξ k + 1 ∣ F k ] − ξ k ) \zeta_n=\xi_n-\sum_{k=0}^{n-1}\left(\mathbb{E}[\xi_{k+1}|\mathscr{F}_k]-\xi_k\right) ζn=ξnk=0n1(E[ξk+1Fk]ξk) ( ζ n , F ) n ≥ 1 (\zeta_n,\mathscr{F})_{n\ge 1} (ζn,F)n1为鞅。
:因为 E [ ξ k + 1 ∣ F k ] − ξ k ∈ F k \mathbb{E}[\xi_{k+1}|\mathscr{F}_k]-\xi_k\in\mathscr{F}_k E[ξk+1Fk]ξkFk,所以 ζ n ∈ F n \zeta_n\in\mathscr{F}_n ζnFn E [ ζ n + 1 ∣ F n ] = E [ ξ n + 1 ∣ F n ] − ∑ k = 0 n ( E [ E [ ξ k + 1 ∣ F k ] ∣ F n ] − E [ ξ k ∣ F n ] ) = E [ ξ n + 1 ∣ F n ] − ( E [ E [ ξ n + 1 ∣ F n ] ∣ F n ] − ξ n + ∑ k = 0 n − 1 ( E [ ξ k + 1 ∣ F k ] − ξ k ) ) = E [ ξ n + 1 ∣ F n ] − E [ ξ n + 1 ∣ F n ] + ξ n − ∑ k = 0 n − 1 ( E [ ξ k + 1 ∣ F k ] − ξ k ) = ξ n − ∑ k = 0 n − 1 ( E [ ξ k + 1 ∣ F k ] − ξ k ) = ζ n . \begin{aligned} \mathbb{E}[\zeta_{n+1}|\mathscr{F}_n]&=\mathbb{E}[\xi_{n+1}|\mathscr{F}_n]-\sum_{k=0}^{n}\left(\mathbb{E}[\mathbb{E}[\xi_{k+1}|\mathscr{F}_k]\mid\mathscr{F}_n]-\mathbb{E}[\xi_k|\mathscr{F}_n]\right)\\ &=\mathbb{E}[\xi_{n+1}|\mathscr{F}_{n}]-\left(\mathbb{E}[\mathbb{E}[\xi_{n+1}|\mathscr{F}_n]\mid\mathscr{F}_n]-\xi_n+\sum_{k=0}^{n-1}\left(\mathbb{E}[\xi_{k+1}|\mathscr{F}_k]-\xi_k\right)\right)\\ &=\mathbb{E}[\xi_{n+1}|\mathscr{F}_n]-\mathbb{E}[\xi_{n+1}|\mathscr{F}_n]+\xi_n-\sum_{k=0}^{n-1}\left(\mathbb{E}[\xi_{k+1}|\mathscr{F}_k]-\xi_k\right)\\ &=\xi_n-\sum_{k=0}^{n-1}\left(\mathbb{E}[\xi_{k+1}|\mathscr{F}_k]-\xi_k\right)\\ &=\zeta_{n}. \end{aligned} E[ζn+1Fn]=E[ξn+1Fn]k=0n(E[E[ξk+1Fk]Fn]E[ξkFn])=E[ξn+1Fn](E[E[ξn+1Fn]Fn]ξn+k=0n1(E[ξk+1Fk]ξk))=E[ξn+1Fn]E[ξn+1Fn]+ξnk=0n1(E[ξk+1Fk]ξk)=ξnk=0n1(E[ξk+1Fk]ξk)=ζn. □ \Box .

Doob下鞅列分解定理

对于 ( Ω , F , ( F n ) n ≥ 0 , P ) (\Omega,\mathscr{F},(\mathscr{F}_n)_{n\ge 0},P) (Ω,F,(Fn)n0,P) ( A n ) n ≥ 0 (A_n)_{n\ge 0} (An)n0 ( Ω , F , P ) (\Omega,\mathscr{F},P) (Ω,F,P)上的随机变量序列,若 ∀ n ≥ 1 \forall n\ge 1 n1,满足 A n A_n An是关于 F n − 1 \mathscr{F}_{n-1} Fn1可测的随机变量,则称 ( A n ) n ≥ 1 (A_n)_{n\ge1} (An)n1可料随机序列(predictable)

定理(Doob下鞅分解) ( ξ n ) n ≥ 0 (\xi_n)_{n\ge 0} (ξn)n0 ( F n ) n ≥ 0 (\mathscr{F}_{n})_{n\ge 0} (Fn)n0下鞅列,则存在唯一 ( F n ) n ≥ 0 (\mathscr{F}_n)_{n\ge 0} (Fn)n0鞅列,满足

  1. M 0 = ξ 0 M_0=\xi_0 M0=ξ0(初值);
  2. 存在唯一的可料递增随机序列 ( A n ) n ≥ 0 (A_n)_{n\ge 0} (An)n0 A 0 = 0 A_0=0 A0=0,使得 ξ n = M n + A n \xi_n=M_n+A_n ξn=Mn+An

证明参照前面的例题1。
注:例题其实是更广的Doob下鞅分解定理,它说明对于一般的期望有限的适应过程都可以分解成鞅与可预料过程的和。

测度变换与Girsanov定理

例2:设 η n = a + ξ 1 + ⋯ + ξ n \eta_n=a+\xi_1+\dots+\xi_n ηn=a+

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值