量子力学 一 基础1 角动量

本文详细介绍了角动量的导出过程,从力学系统的运动方程出发,阐述了角动量作为守恒量的物理意义。接着通过两个实例——自由下落的实心球和陀螺模型,展示了角动量在实际问题中的应用,解释了如何利用角动量方程求解速度和转动规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量子力学 一 基础1 角动量

角动量的导出

角动量(angular momentum)是力学中非常有用的一个量,它与能量、动量等物理量一样,是运动方程的一种积分,并可以导出相应的守恒律。我们先简单回顾一下运动方程的积分。

在力学系统的运动过程中,如果系统的自由度为 s s s,那么我们可以用一个 s s s维的向量 q \textbf q q描述系统的空间位置信息,并用它对时间的导数 q ˙ \dot{\textbf q} q˙描述系统的速度信息,称 q \textbf q q为广义坐标, q ˙ \dot{\textbf q} q˙为广义速度, ( q , q ˙ ) (\textbf q,\dot{\textbf q}) (q,q˙) 2 s 2s 2s个变量可以描述整个系统的运动。系统的Lagrange函数为 L ( q , q ˙ , t ) L(\textbf q,\dot{\textbf q},t) L(q,q˙,t),它满足Euler-Lagrange方程:
d d t ∇ q ˙ L = ∇ q L \frac{d}{dt}\nabla_{\dot{\textbf q}} L = \nabla_{\textbf q}L dtdq˙L=qL

这是一个 s s s维二阶微分方程组,因此它的通解包含 2 s 2s 2s个积分常数,这些积分常数中,有一个常数作为时间的加项,可以通过选择合适的零时刻消去,所以实际上有意义的积分常数有 2 s − 1 2s-1 2s1个,记为 C 1 , C 2 , ⋯   , C 2 s − 1 C_1,C_2,\cdots,C_{2s-1} C1,C2,,C2s1,Euler-Lagrange方程的通解可以表示为
q = q ( t , C 1 , C 2 , ⋯   , C 2 s − 1 ) q ˙ = q ˙ ( t , C 1 , C 2 , ⋯   , C 2 s − 1 ) \textbf q = \textbf q(t,C_1,C_2,\cdots,C_{2s-1}) \\ \dot{\textbf q} = \dot{\textbf q} (t,C_1,C_2,\cdots,C_{2s-1}) q=q(t,C1,C2,,C2s1)q˙=q˙(t,C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值