【可控图像生成系列论文(五)】ControlNet 和 IP-Adapter 之间的区别有哪些?

系列文章目录



一、条件输入

在这里插入图片描述

  • 在 ControlNet 中,由于通过残差连接(红框的部分)将输入直接添加到 SD Decoder Block 中,以便在训练深度神经网络时防止梯度消失问题。

    • 为了进行这种直接相加操作,条件输入和基础输入(输出)的维度必须相同
    • 如果条件输入和基础输入的像素尺寸不同,则无法进行这种简单的相加操作。
  • IP-Adapter 通常通过一种适配器模块来实现,该模块能够动态调整生成模型的参数或特征,以适应不同的输入条件。条件输入则大小的限制。

  • 下图左边是 IP-Adapter,条件输入可以和基础输入、最终输出的大小不一致。

  • 下图右边是 ControlNet,条件输入需要和最终输出的大小保持 pixel-level 的一致。

在这里插入图片描述

二、控制 vs 适应

  • ControlNet 专注于在生成过程中提供明确的控制和引导。

    • ControlNet 通过残差连接将条件输入与基础输入相结合,实现精细控制。
  • IP-Adapter 专注于增强生成模型对不同输入条件的适应性和鲁棒性。

    • IP-Adapter 则通过插入适配器模块来动态调整模型参数或特征,实现输入条件的适应性。
### IP-Adapter Clip SD15 实现原理 IP-Adapter Clip SD15 是一种用于增强 Stable Diffusion图像生成能力的技术工具。该组件主要依赖于 CLIP (Contrastive Language–Image Pretraining) 模型来解析输入提示词并指导扩散模型生成更贴合描述的高质量图像[^1]。 CLIP 模型能够理解自然语言描述并与视觉特征建立联系,从而使得基于文本到图像的任务更加高效准确。当应用于 Stable Diffusion 时,Clip SD15 版本特别针对这一框架进行了优化调整,在保持原有优势的同时提高了适配性性能表现。 具体来说,IP-Adapter Clip SD15 的工作流程如下: 1. **预处理阶段**:接收用户提供的文字提示作为输入,并将其传递给预先训练好的 CLIP 编码器。 2. **编码过程**:利用 CLIP 对这些文本信息进行向量化表示,形成一组能被机器理解操作的数据结构。 3. **融合机制**:将上述得到的文字嵌入与初始噪声图相结合,以此引导后续迭代过程中每一步的变化方向。 4. **解码重建**:经过多次循环更新后最终输出一张满足预期条件的新图片。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-2-base" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "A fantasy landscape with a castle on top of the mountain under starry sky." image = pipe(prompt=prompt).images[0] image.show() ``` 此代码片段展示了如何加载一个预训练的 Stable Diffusion 模型并通过提供一段描述性的语句来自动生成相应的插画作品。虽然这里展示的是基础版本的操作方式,但对于想要深入了解 IP-Adapter Clip SD15 使用细节的人来说,这仍然是一个好的起点[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值