一致性滤波学习笔记

博客探讨了一致性在多智能体系统中的概念,包括连续时间、离散时间和时变拓扑网络的一致性算法。同时介绍了基于卡尔曼滤波的一致性算法,这种算法允许网络中的传感器节点状态估计值在迭代中趋近一致,且仅依赖局部信息,无需中心节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一致性

    一致性是指在具有多个个体的系统中,各个体状态在某种规则作用下,伴随时间推移而趋于一致。一致性协议就是个体与个体之间的作用规则,表示个体与邻居个体的信息交互过程。

一致性算法

在这里插入图片描述
图 2-2 给出了多智能体系统一致性问题的两种不同表达形式。由图(a)和图(b)可知,每个节点为一个积分器,每个系统的传递函数为 P ( s ) = 1 / s P(s)=1/s P(s)=1/s,整个系统是个多输入多输出系统,图(a)中 x i x_i xi表示第 i i i个节点的状态(例如位置,速度信息等)。由 n n n个节点构成的简单网络的一致性算法为:
在这里插入图片描述
(1)连续时间一致性算法
在这里插入图片描述
(2)离散时间一致性算法
在这里插入图片描述
(3)时变拓扑网络一致性算法
在这里插入图片描述在这里插入图片描述

一致性卡尔曼滤波

一致性卡尔曼滤波算法(Consensus-based Kalman filtering:CKF)是一种耦合卡尔曼滤波和多智能体一致性的新型分布式估计算法,由于只需使用节点的局部信息,且不需要融合中心,随着迭代次数增加,网络中所有的传感器节点的状态估计值都能趋于一致。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值