【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(1):二阶与三阶行列式、全排列及其逆序数

前言

Hello!小伙伴!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖…已保研。目前正在学习C++/Linux/Python
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
机器学习小白阶段
文章仅作为自己的学习笔记 用于知识体系建立以及复习
知其然 知其所以然!

二阶与三阶行列式

二阶行列式

记作

∣ a 11 a 12 a 21 a 22 ∣ = a 11 ∗ a 22 − a 12 ∗ a 21 \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}*a_{22}-a_{12}*a_{21} a11a21a12a22=a11a22a12a21

定义

主对角线上的两元素之积减去副对角线上两元素之积所得的差,即: a 11 ∗ a 22 − a 12 ∗ a 21 a_{11}*a_{22}-a_{12}*a_{21} a11a22a12a21

注:行列式本质是一个数值,比如 ∣ 1 2 3 4 ∣ \begin{vmatrix} 1 & 2\\ 3 &4 \end{vmatrix} 1324代表的就是数值(-2=1×4-2×3)

举例

∣ 3 − 2 2 1 ∣ = ? \begin{vmatrix} 3 & -2\\ 2 & 1 \end{vmatrix} = ? 3221=

答:

∣ 3 − 2 2 1 ∣ = 3 ∗ 1 − ( − 2 ) ∗ 2 = 3 − ( − 4 ) = 7 \begin{vmatrix} 3 & -2\\ 2 & 1 \end{vmatrix}=3*1-(-2)*2=3-(-4)=7 3221=31(2)2=3(4)=7

三阶行列式

记作

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 ∗ a 22 ∗ a 33 + a 12 ∗ a 23 ∗ a 31 + a 13 ∗ a 21 ∗ a 32 − a 11 ∗ a 23 ∗ a 32 − a 12 ∗ a 21 ∗ a 33 − a 13 ∗ a 22 ∗ a 31 \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{vmatrix}=a_{11}*a_{22}*a_{33}+a_{12}*a_{23}*a_{31}+a_{13}*a_{21}*a_{32}-a_{11}*a_{23}*a_{32}-a_{12}*a_{21}*a_{33}-a_{13}*a_{22}*a_{31} a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31

举例

∣ 1 2 − 4 − 2 2 1 − 3 4 − 2 ∣ = ? \begin{vmatrix} 1 & 2 & -4\\ -2 & 2 & 1\\ -3 & 4 & -2\\ \end{vmatrix} = ? 123224412=

答:

∣ 1 2 − 4 − 2 2 1 − 3 4 − 2 ∣ = 1 ∗ 2 ∗ ( − 2 ) + 2 ∗ 1 ∗ ( − 3 ) + ( − 4 ) ∗ ( − 2 ) ∗ 4 − 1 ∗ 1 ∗ 4 − 2 ∗ ( − 2 ) ∗ ( − 2 ) − ( − 4 ) ∗ 2 ∗ ( − 3 ) = − 14 \begin{vmatrix} 1 & 2 & -4\\ -2 & 2 & 1\\ -3 & 4 & -2 \end{vmatrix}=1*2*(-2)+2*1*(-3)+(-4)*(-2)*4-1*1*4-2*(-2)*(-2)-(-4)*2*(-3)=-14 123224412=12(2)+21(3)+(4)(2)41142(2)(2)(4)2(3)=14

全排列及其逆序数

全排列

定义

从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。

当m=n时所有的排列情况叫全排列。

公式

全排列数f(n)=n!(定义0!=1)

举例

用1、2、3三个数字,可以组成多少个没有重复数字的三位数 ?

答:3×2×1=6种。

假设先放百位,有三种可能,再放十位,有两种可能,最后放个位,只有一种可能了。

故为3×2×1=6种

从上面例子可以发现:

当有n个不同数字进行排列时

第一个位置有(n)选择,第二个位置有(n-1)种选择…第n个位置有1种选择,一共有n*(n-1)(n-2)21种可能,也就是n!种排列方式。

我们用 P n P_{n} Pn表示n种不同元素的所有排列的种数,则

P n = n ∗ ( n − 1 ) ∗ ( n − 2 ) ∗ . . . ∗ 3 ∗ 2 ∗ 1 = n ! P_n=n*(n-1)*(n-2)*...*3*2*1=n! Pn=n(n1)(n2)...321=n!

逆序数

概念

  • 标准次序:n个不同的数字,我们可以规定从小到大为标准次序
  • 逆序:与标准排列次序相反(比如两个元素排序是从大到小,与标准次序相反,则视为逆序)
  • 排列的逆序数:一个排列中所有逆序的总数

计算排列的逆序数的方法

n个元素(依次为1,2,3…n-1,n),规定从小到大为标准次序

p 1 p 2 . . . p n p_1p_2...p_n p1p2...pn为这n个元素的一个排列,对于元素 p i p_i pi(i=1,2…,n),如果比 p i p_i pi大的且排在 p i p_i pi前面的元素有 t i t_i ti个,那么就说 p i p_i pi这个元素的逆序数是 t i t_i ti

全体元素的逆序数总和为t,那么

t = t 2 + t 2 + . . . + t n = ∑ t = 1 n t i t=t_2+t_2+...+t_n=\sum_{t=1}^nt_i t=t2+t2+...+tn=t=1nti

即是这个排列的逆序数。

举例

求排列32514的逆序数

答:3在第一位,前面没有数,逆序数为0

2在第二位,前面的数中,有一个数3比2大,所以逆序数为1

5的前面没有比5的数,逆序数为0

1的前面比1大的数有:3、2、5,所以逆序数为3

4的前面比4大的只有5,所以逆序数为1

综上,该排列的逆序数t=0+1+0+3+1=5

补充概念

  • 齐排列:逆序数为奇数的排列
  • 偶排列:逆序数为偶数的排列

结语

文章仅作为学习笔记,记录从0到1的一个过程

希望对您有所帮助,如有错误欢迎小伙伴指正~

我是 海轰ଘ(੭ˊᵕˋ)੭

如果您觉得写得可以的话,请点个赞吧

谢谢支持 ❤️

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值