课程学习笔记,课程链接
目录
Resize():重新设置 PIL Image的大小,返回也是PIL Image格式
Compose():输入为 transforms 类型参数的列表
常用的输入图片对象的数据类型
Python 中 __call__ 的用法
class Person:
def __call__(self, name): # 下划线表示其内置函数
print("__call__" + " Hello " + name)
def hello(self, name):
print("hello" + name)
person = Person()
person("zhangsan") # 无需用·来调用方法的方式,可以直接使用对象加上括号进行调用
person.hello("lisi")
常用的 Transform 如下
ToTensor() :将图片对象类型转为 tensor
Normalize() :对图像像素进行归一化计算
Resize():重新设置 PIL Image的大小,返回也是PIL Image格式
Compose():输入为 transforms 类型参数的列表
Compose()中的参数需要是一个列表,python中列表的表示形式为 [数据1,数据2,...],在 Compose 中,数据需要是 transforms 类型,所以 Cmpose( [transforms 参数1, transforms 参数2], ...)
目的是将几个 transforms 操作打包成一个,比如要先进行大小调整,然后进行归一化计算,返回 tensor 类型,则可以将 ToTensor、Normalize、Resize,按操作顺序输入到 Compose 中。
RandomCrop:随机裁剪
代码
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer = SummaryWriter("logs")
img = Image.open("D:\Code\Project\learn_pytorch\python_p12-13\image\img-1.jpg")
print(img) # 输出类型,查看是否正确读取
# ToTensor
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)
# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([6, 3, 2], [9, 3, 5]) # 三个信道
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm, 2)
# Resize
print(img.size)
trans_resize = transforms.Resize((900,900))
# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img)
# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image("Resize", img_resize, 0)
print(img_resize)
# Compose - resize - 2
trans_resize_2 = transforms.Resize(600)
# PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)
# RandomCrop
trans_random = transforms.RandomCrop(400)
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):
img_crop = trans_compose_2(img)
writer.add_image("RandomCrop", img_crop, i)
writer.close()
PyCharm 小技巧设置
忽略大小写,进行提示匹配
通常,我们需要输入 R,才能提示出 Resize,我们想设置即便输入的是 r,也能提示出 Resize,也就是忽略了大小写进行匹配提示。
总结使用方法
关注输入和输出类型
多看官方文档
关注方法需要什么参数
不知道返回值时,print / print(type()) / debug