PyTorch深度学习笔记(九)常见Transforms的使用

课程学习笔记,课程链接

目录

常用的输入图片对象的数据类型

Python 中 __call__ 的用法

常用的 Transform 如

ToTensor() :将图片对象类型转为 tensor​

Normalize() :对图像像素进行归一化计算

Resize():重新设置 PIL Image的大小,返回也是PIL Image格式

Compose():输入为 transforms 类型参数的列表

RandomCrop:随机裁剪

代码

PyCharm 小技巧设置

总结使用方法


常用的输入图片对象的数据类型

Python 中 __call__ 的用法

class Person:
    def __call__(self, name):  # 下划线表示其内置函数
        print("__call__" + " Hello " + name)
​
    def hello(self, name):
        print("hello" + name)
​
​
person = Person()
person("zhangsan")  # 无需用·来调用方法的方式,可以直接使用对象加上括号进行调用
person.hello("lisi")

常用的 Transform 如下

ToTensor() :将图片对象类型转为 tensor

Normalize() :对图像像素进行归一化计算

Resize():重新设置 PIL Image的大小,返回也是PIL Image格式

Compose():输入为 transforms 类型参数的列表

Compose()中的参数需要是一个列表,python中列表的表示形式为 [数据1,数据2,...],在 Compose 中,数据需要是 transforms 类型,所以 Cmpose( [transforms 参数1, transforms 参数2], ...)

目的是将几个 transforms 操作打包成一个,比如要先进行大小调整,然后进行归一化计算,返回 tensor 类型,则可以将 ToTensor、Normalize、Resize,按操作顺序输入到 Compose 中。

RandomCrop:随机裁剪

代码

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
​
writer = SummaryWriter("logs")
img = Image.open("D:\Code\Project\learn_pytorch\python_p12-13\image\img-1.jpg")
print(img)  # 输出类型,查看是否正确读取
​
# ToTensor
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)
​
# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([6, 3, 2], [9, 3, 5])  # 三个信道
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm, 2)
​
# Resize
print(img.size)
trans_resize = transforms.Resize((900,900))
# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img)
# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image("Resize", img_resize, 0)
print(img_resize)
​
# Compose - resize - 2
trans_resize_2 = transforms.Resize(600)
# PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)
​
# RandomCrop
trans_random = transforms.RandomCrop(400)
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):
    img_crop = trans_compose_2(img)
    writer.add_image("RandomCrop", img_crop, i)
​
writer.close()

PyCharm 小技巧设置

忽略大小写,进行提示匹配

通常,我们需要输入 R,才能提示出 Resize,我们想设置即便输入的是 r,也能提示出 Resize,也就是忽略了大小写进行匹配提示。

总结使用方法

关注输入和输出类型

多看官方文档

关注方法需要什么参数

不知道返回值时,print / print(type()) / debug

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值