写在前面
使用python基于seaborn绘制好看的热力图heatmap。
关于heatmap,使用python自带的matplotlib也能绘制,但是感觉seborn提供的更方便一点,唯一需要注意的就是将数据调整为:rectangular dataset。最无脑的操作就是将数据处理为Pandas DataFrame的格式,这一点在xarray读取的nc中很方便。
- https://seaborn.pydata.org/generated/seaborn.heatmap.html
可以借助xarray.Dataset.reset_index()这个函数
- https://docs.xarray.dev/en/latest/generated/xarray.Dataset.reset_index.html
以下使用的测试数据是noaa的sst-anomaly的月平均数据,简单将其处理为二维数组,这里简单将其处理为-20°S-20°N,120°E-180°E区域平均内2000-2019年共20年的数据,同时为了满足为二维矩阵,将其按年份和月份分组,并计算每个月的平均值。
然后调用seaborn.heatmap()进行绘图,以下是绘图结果

绘图代码
以下是绘图的主要代码,这里是封装好的函数,只需要传入处理好的dataframe二维数据即可,以下是处理好的数据的表现形式:

def plot(returns,
title="Global Temperature Anomaly ($^\circ$C)\n",
title_color="black",
title_size=14,
Python利用seaborn绘制热力图

最低0.47元/天 解锁文章
838

被折叠的 条评论
为什么被折叠?



