正交多项式序列.
- 如果多项式序列
{
p
n
(
x
)
,
n
=
0
,
1
,
.
.
.
}
\{p_n(x),n=0,1,...\}
{pn(x),n=0,1,...} 满足
(
p
n
,
p
m
)
=
∫
a
b
ρ
(
x
)
p
n
(
x
)
p
m
(
x
)
d
x
=
{
0
,
n
≠
m
A
n
,
n
=
m
;
n
,
m
=
0
,
1
,
2
,
.
.
.
(p_n,p_m)=\int_a^b\rho(x)p_n(x)p_m(x)dx=\left\{ \begin{aligned} &0,n≠m\\ &A_n,n=m \\ \end{aligned} \right.;n,m=0,1,2,...
(pn,pm)=∫abρ(x)pn(x)pm(x)dx={0,n=mAn,n=m;n,m=0,1,2,...
那么称 { p n ( x ) , n = 0 , 1 , . . . } \{p_n(x),n=0,1,...\} {pn(x),n=0,1,...} 是 [ a , b ] [a,b] [a,b] 上带权 ρ ( x ) \rho(x) ρ(x) 的正交多项式序列。
勒让德多项式.
- 勒让德Legendre,法国数学家,生于巴黎,卒于同地。第一次接触这个人名是在电动力学中,分离变量法求解带电体电势时,球坐标中求解三维拉普拉斯方程时会出现勒让德函数,但反正也不会考,所以就糊里糊涂过去了。
- 【定义】在区间 [ − 1 , 1 ] [-1,1] [−1,1] 上的多项式序列 P n ( x ) = 1 2 n ⋅ n ! ⋅ d n d x n [ ( x 2 − 1 ) n ] , n = 0 , 1 , 2 , . . . P_n(x)=\frac{1}{2^n·n!}·\frac{d^n}{dx^n}[(x^2-1)^n],n=0,1,2,... Pn(x)=2n⋅n!1⋅dxndn[(x2−1)n],n=0,1,2,...称为勒让德Legendre多项式。
- ( P n , P m ) = { 0 , n ≠ m 2 2 n + 1 , n = m ; n , m = 0 , 1 , 2 , . . . (P_n,P_m)=\left\{ \begin{aligned} &0,n≠m\\ &\frac{2}{2n+1},n=m \\ \end{aligned} \right.;n,m=0,1,2,... (Pn,Pm)=⎩⎨⎧0,n=m2n+12,n=m;n,m=0,1,2,...,即 { P n ( x ) } \{P_n(x)\} {Pn(x)} 在区间 [ − 1 , 1 ] [-1,1] [−1,1] 上带权 ρ ( x ) = 1 \rho(x)=1 ρ(x)=1 正交,并且我们对其进行归一化可以得到规范正交多项式序列 { e n ( x ) = 2 n + 1 2 P n ( x ) , n = 0 , 1 , 2... } . \{e_n(x)=\sqrt{\frac{2n+1}{2}}P_n(x),n=0,1,2...\}. {en(x)=22n+1Pn(x),n=0,1,2...}.
- 【证明】当 n ≠ m n≠m n=m 时,不妨认为 n > m n>m n>m,记 ϕ ( x ) = ( x 2 − 1 ) n \phi(x)=(x^2-1)^n ϕ(x)=(x2−1)n,则 P n ( x ) = 1 2 n ⋅ n ! ϕ ( n ) ( x ) P_n(x)=\frac{1}{2^n·n!}\phi^{(n)}(x) Pn(x)=2n⋅n!1ϕ(n)(x). 所以有如下推导: ( P n , P m ) = ∫ − 1 1 P n ( x ) P m ( x ) d x = ∫ − 1 1 1 2 n ⋅ n ! ϕ ( n ) ( x ) P m ( x ) d x = 1 2 n ⋅ n ! ϕ ( n − 1 ) ( x ) P m ( x ) ∣ − 1 1 − 1 2 n ⋅ n ! ∫ − 1 1 ϕ ( n − 1 ) ( x ) P m ′ ( x ) d x = − 1 2 n ⋅ n ! ∫ − 1 1 ϕ ( n − 1 ) ( x ) P m ′ ( x ) d x = . . . = ( − 1 ) n 1 2 n ⋅ n ! ∫ − 1 1 ϕ ( x ) P m ( n ) ( x ) d x = 0 \begin{aligned} (P_n,P_m)&=\int_{-1}^1P_n(x)P_m(x)dx \\ &=\int_{-1}^1\frac{1}{2^n·n!}\phi^{(n)}(x)P_m(x)dx\\ &=\frac{1}{2^n·n!}\phi^{(n-1)}(x)P_m(x)\Bigg|_{-1}^1-\frac{1}{2^n·n!}\int_{-1}^1\phi^{(n-1)}(x)P'_m(x)dx\\ &=-\frac{1}{2^n·n!}\int_{-1}^1\phi^{(n-1)}(x)P'_m(x)dx\\ &=...\\ &=(-1)^n\frac{1}{2^n·n!}\int_{-1}^1\phi(x)P^{(n)}_m(x)dx\\ &=0 \end{aligned} (Pn,Pm)=∫−11Pn(x)Pm(x)dx=∫−112n⋅n!1ϕ(n)(x)Pm(x)dx=2n⋅n!1ϕ(n−1)(x)Pm(x)∣∣∣∣∣−11−2n⋅n!1∫−11ϕ(n−1)(x)Pm′(x)dx=−2n⋅n!1∫−11ϕ(n−1)(x)Pm′(x)dx=...=(−1)n2n⋅n!1∫−11ϕ(x)Pm(n)(x)dx=0
- 其中第三个等号使用分部积分法 ∫ f ′ ( x ) g ( x ) d x = f ( x ) g ( x ) − ∫ f ( x ) g ′ ( x ) d x \int f'(x)g(x)dx=f(x)g(x)-\int f(x)g'(x)dx ∫f′(x)g(x)dx=f(x)g(x)−∫f(x)g′(x)dx;第四个等号使用公式 ϕ ( k ) ( x ) ∣ x = ± 1 = 0 \phi^{(k)}(x)\big|_{x=±1}=0 ϕ(k)(x)∣∣x=±1=0;最后一个等号由于 P m ( x ) P_m(x) Pm(x) 是 m m m 次多项式,且 n > m n>m n>m,所以求 n n n 阶导数为0.
- 当 n = m n=m n=m 时,和上述情况类似,有如下推导 ( P n , P n ) = ( − 1 ) n 1 2 n ⋅ n ! ∫ − 1 1 ϕ ( x ) P n ( n ) ( x ) d x = ( − 1 ) n 2 n ⋅ n ! ⋅ n ! ⋅ a n ∫ − 1 1 ϕ ( x ) d x = a n 2 n ∫ − 1 1 ( 1 − x 2 ) n d x = 2 ⋅ a n 2 n ∫ 0 π 2 c o s 2 n + 1 t d t = 2 ⋅ a n 2 n ⋅ 2 n 2 n + 1 ⋅ 2 n − 2 2 n − 1 ⋅ ⋅ ⋅ 4 5 ⋅ 2 3 ⋅ 1 = 2 ⋅ ( 2 n ) ! 2 n ⋅ ( n ! ) 2 ⋅ 1 2 n ⋅ 2 n ⋅ n ! ⋅ ( 2 n + 1 ) − 1 ⋅ ∏ i = 0 n − 1 ( 2 i + 1 ) − 1 = 2 ⋅ ( 2 n ) ! 2 n ⋅ n ! ⋅ ∏ i = 0 n − 1 ( 2 i + 1 ) − 1 ⋅ ( 2 n + 1 ) − 1 = 2 ⋅ 2 n ⋅ n ! 2 n ⋅ n ! ⋅ ( 2 n + 1 ) − 1 = 2 2 n + 1 \begin{aligned} (P_n,P_n)&=(-1)^n\frac{1}{2^n·n!}\int_{-1}^1\phi(x)P^{(n)}_n(x)dx\\ &=\frac{(-1)^n}{2^n·n!}·n!·a_n\int_{-1}^1\phi(x)dx\\ &=\frac{a_n}{2^n}\int_{-1}^1(1-x^2)^ndx\\ &=\frac{2·a_n}{2^n}\int_{0}^{\frac{\pi}{2}}cos^{2n+1}tdt\\ &=\frac{2·a_n}{2^n}·\frac{2n}{2n+1}·\frac{2n-2}{2n-1}···\frac45·\frac23·1\\ &=\frac{2·(2n)!}{2^n·(n!)^2}·\frac{1}{2^n}·2^n·n!·(2n+1)^{-1}·\prod_{i=0}^{n-1}(2i+1)^{-1}\\ &=\frac{2·(2n)!}{2^n·n!}·\prod_{i=0}^{n-1}(2i+1)^{-1}·(2n+1)^{-1}\\ &=\frac{2·2^n·n!}{2^n·n!}·(2n+1)^{-1}\\ &=\frac{2}{2n+1} \end{aligned} (Pn,Pn)=(−1)n2n⋅n!1∫−11ϕ(x)Pn(n)(x)dx=2n⋅n!(−1)n⋅n!⋅an∫−11ϕ(x)dx=2nan∫−11(1−x2)ndx=2n2⋅an∫02πcos2n+1tdt=2n2⋅an⋅2n+12n⋅2n−12n−2⋅⋅⋅54⋅32⋅1=2n⋅(n!)22⋅(2n)!⋅2n1⋅2n⋅n!⋅(2n+1)−1⋅i=0∏n−1(2i+1)−1=2n⋅n!2⋅(2n)!⋅i=0∏n−1(2i+1)−1⋅(2n+1)−1=2n⋅n!2⋅2n⋅n!⋅(2n+1)−1=2n+12
- 其中 a n a_n an 是 P n ( x ) P_n(x) Pn(x) 中 n n n 次项的系数 ( 2 n ) ! 2 n ⋅ ( n ! ) 2 \frac{(2n)!}{2^n·(n!)^2} 2n⋅(n!)2(2n)!;第三第四个等号使用换元法,令 x = s i n t x=sint x=sint. 至此勒让德多项式在 [ − 1 , 1 ] [-1,1] [−1,1] 正交性得证,并且 e n ( x ) ∣ x ∈ [ − 1 , 1 ] e_n(x)|x\in[-1,1] en(x)∣x∈[−1,1] 规范正交得证。
- P n ( − x ) = ( − 1 ) n P n ( x ) P_n(-x)=(-1)^nP_n(x) Pn(−x)=(−1)nPn(x),即 n = 2 k , k ∈ N n=2k,k\in N n=2k,k∈N 时 P n ( x ) P_n(x) Pn(x) 是偶函数; n = 2 k + 1 , k ∈ N n=2k+1,k\in N n=2k+1,k∈N 时 P n ( x ) P_n(x) Pn(x) 是奇函数。
- 【简述】由于 ϕ ( x ) = ( x 2 − 1 ) n \phi(x)=(x^2-1)^n ϕ(x)=(x2−1)n 是偶次多项式,所以求偶数次导依旧是偶次多项式,求奇数次导则成为奇次多项式。
- 勒让德多项式可以由下述递推式定义: { P 0 ( x ) = 1 P 1 ( x ) = x P n + 1 ( x ) = 2 n + 1 n + 1 x P n ( x ) − n n + 1 P n − 1 ( x ) , n = 1 , 2 , . . . \left\{ \begin{aligned} &P_0(x)=1\\ &P_1(x)=x\\ &P_{n+1}(x)=\frac{2n+1}{n+1}xP_n(x)-\frac{n}{n+1}P_{n-1}(x),n=1,2,... \end{aligned} \right. ⎩⎪⎪⎪⎨⎪⎪⎪⎧P0(x)=1P1(x)=xPn+1(x)=n+12n+1xPn(x)−n+1nPn−1(x),n=1,2,...
- 【证明】根据勒让德多项式定义,令 n = 0 , 1 n=0,1 n=0,1,得到 P 0 ( x ) = 1 , P 1 ( x ) = x P_0(x)=1,P_1(x)=x P0(x)=1,P1(x)=x.
- 考虑 n + 1 n+1 n+1 次多项式 x P n ( x ) = ∑ i = 0 n + 1 b i P i ( x ) xP_n(x)=\sum^{n+1}_{i=0}b_iP_i(x) xPn(x)=∑i=0n+1biPi(x),在两边同时乘以 P k ( x ) P_k(x) Pk(x),并在 [ − 1 , 1 ] [-1,1] [−1,1] 进行积分: ∫ − 1 1 x P n ( x ) P k ( x ) d x = ∫ − 1 1 P k ( x ) [ ∑ i = 0 n + 1 b i P i ( x ) ] d x . \int_{-1}^1xP_n(x)P_k(x)dx=\int_{-1}^1P_k(x)[\sum^{n+1}_{i=0}b_iP_i(x)]dx. ∫−11xPn(x)Pk(x)dx=∫−11Pk(x)[i=0∑n+1biPi(x)]dx.
- 根据加权内积的正交性可得: ∫ − 1 1 x P n ( x ) P k ( x ) d x = b k ∫ − 1 1 P k 2 ( x ) d x . \int_{-1}^1xP_n(x)P_k(x)dx=b_k\int_{-1}^1P^2_k(x)dx. ∫−11xPn(x)Pk(x)dx=bk∫−11Pk2(x)dx.
- 考虑 k ≤ n − 2 k≤n-2 k≤n−2 时, x P k ( x ) xP_k(x) xPk(x) 不超过 n − 1 n-1 n−1 次,迭代使用分部积分法最终出现 [ x P k ( x ) ] ( n ) [xP_k(x)]^{(n)} [xPk(x)](n) 项,并且该项为0,因此上式左端积分为0,因此 b k = 0 ∣ k ≤ n − 2. b_k=0|k≤n-2. bk=0∣k≤n−2.
- 考虑 k = n k=n k=n 时,上式左端为奇函数 x P n 2 ( x ) xP^2_n(x) xPn2(x) 在对称区间积分,因此 b n = 0. b_n=0. bn=0.
- 因此 x P n ( x ) = ∑ i = 0 n + 1 b i P i ( x ) xP_n(x)=\sum^{n+1}_{i=0}b_iP_i(x) xPn(x)=∑i=0n+1biPi(x) 至此可以写为 x P n ( x ) = b n − 1 P n − 1 ( x ) + b n + 1 P n + 1 ( x ) . (*) xP_n(x)=b_{n-1}P_{n-1}(x)+b_{n+1}P_{n+1}(x).\tag{*} xPn(x)=bn−1Pn−1(x)+bn+1Pn+1(x).(*)
- 考察 P n ( x ) = 1 2 n ⋅ n ! ⋅ d n d x n [ ( x 2 − 1 ) n ] P_n(x)=\frac{1}{2^n·n!}·\frac{d^n}{dx^n}[(x^2-1)^n] Pn(x)=2n⋅n!1⋅dxndn[(x2−1)n],根据二项式定理, ( x 2 − 1 ) n = ∑ r = 0 n C n r ( − 1 ) n − r x 2 r . (x^2-1)^n=\sum^n_{r=0}C_n^r(-1)^{n-r}x^{2r}. (x2−1)n=∑r=0nCnr(−1)n−rx2r. 当 n = 2 k , k ∈ N n=2k,k\in N n=2k,k∈N 时, d n d x n [ ( x 2 − 1 ) n ] = ∑ r = k n C n r ( − 1 ) n − r x 2 ( r − k ) 2 r ! [ 2 ( r − k ) ] ! ; \frac{d^n}{dx^n}[(x^2-1)^n]=\sum^n_{r=k}C^r_n(-1)^{n-r}x^{2(r-k)}\frac{2r!}{[2(r-k)]!}; dxndn[(x2−1)n]=∑r=knCnr(−1)n−rx2(r−k)[2(r−k)]!2r!; 当 n = 2 k + 1 , k ∈ N n=2k+1,k\in N n=2k+1,k∈N 时, d n d x n [ ( x 2 − 1 ) n ] = ∑ r = k + 1 n C n r ( − 1 ) n − r x 2 ( r − k ) − 1 2 r ! [ 2 ( r − k ) − 1 ] ! . \frac{d^n}{dx^n}[(x^2-1)^n]=\sum^n_{r=k+1}C_n^r(-1)^{n-r}x^{2(r-k)-1}\frac{2r!}{[2(r-k)-1]!}. dxndn[(x2−1)n]=∑r=k+1nCnr(−1)n−rx2(r−k)−1[2(r−k)−1]!2r!.
- 观察上述两式可以发现, d n d x n [ ( x 2 − 1 ) n ] \frac{d^n}{dx^n}[(x^2-1)^n] dxndn[(x2−1)n] 中 x x x 的次数奇偶性和 n n n 的奇偶性一致,且其系数为对应的组合数 C n r C_n^r Cnr,令 x = 1 x=1 x=1,则 d n d x n [ ( x 2 − 1 ) n ] ∣ x = 1 = 2 n ⋅ n ! \frac{d^n}{dx^n}[(x^2-1)^n]\bigg|_{x=1}=2^n·n! dxndn[(x2−1)n]∣∣∣∣x=1=2n⋅n!,因此 P n ( 1 ) = 1 P_n(1)=1 Pn(1)=1,将其代入 ( ∗ ) (*) (∗) 式,可得 1 = b n − 1 + b n + 1 . 1=b_{n-1}+b_{n+1}. 1=bn−1+bn+1.
- 比较 ( ∗ ) (*) (∗) 式两端最高次项系数,左边 a n = ( 2 n ) ! 2 n ⋅ ( n ! ) 2 a_n=\frac{(2n)!}{2^n·(n!)^2} an=2n⋅(n!)2(2n)!,右边为 b n + 1 [ 2 ( n + 1 ) ] ! 2 n + 1 ⋅ [ ( n ) + 1 ! ] 2 b_{n+1}\frac{[2(n+1)]!}{2^{n+1}·[(n)+1!]^2} bn+12n+1⋅[(n)+1!]2[2(n+1)]!,解得 b n + 1 = n + 1 2 n + 1 b_{n+1}=\frac{n+1}{2n+1} bn+1=2n+1n+1,因此 b n − 1 = n 2 n + 1 b_{n-1}=\frac{n}{2n+1} bn−1=2n+1n,至此证明: x P n ( x ) = n 2 n + 1 P n − 1 ( x ) + n + 1 2 n + 1 P n + 1 ( x ) , n = 1 , 2 , . . . xP_n(x)=\frac{n}{2n+1}P_{n-1}(x)+\frac{n+1}{2n+1}P_{n+1}(x),n=1,2,... xPn(x)=2n+1nPn−1(x)+2n+1n+1Pn+1(x),n=1,2,...
- P n + 1 ( x ) = n + 1 2 n + 1 x P n ( x ) − n n + 1 P n − 1 ( x ) , n = 1 , 2 , . . . P_{n+1}(x)=\frac{n+1}{2n+1}xP_n(x)-\frac{n}{n+1}P_{n-1}(x),n=1,2,... Pn+1(x)=2n+1n+1xPn(x)−n+1nPn−1(x),n=1,2,...
[ a , b ] [a,b] [a,b]
- 一般地,想要求 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上的 n n n 次最佳平方逼近时,只需要进行如下代换: x = a + b 2 + b − a 2 t . x=\frac{a+b}{2}+\frac{b-a}{2}t. x=2a+b+2b−at.
- 就能够将将区间 x ∈ [ a , b ] x\in[a,b] x∈[a,b] 变换为 t ∈ [ − 1 , 1 ] t\in[-1,1] t∈[−1,1],而后取勒让德多项式为基函数,求出 g ( t ) = f ( a + b 2 + b − a 2 t ) g(t)=f(\frac{a+b}{2}+\frac{b-a}{2}t) g(t)=f(2a+b+2b−at) 在 [ − 1 , 1 ] [-1,1] [−1,1] 上的最佳平方逼近,然后再令: t = 2 b − a ( x − a + b 2 ) . t=\frac{2}{b-a}(x-\frac{a+b}{2}). t=b−a2(x−2a+b).就能得到 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上的最佳平方逼近函数。