代数构成.
- 代数系统的三要素是载体,运算与代数常数。
- 载体本质为集合,例如自然数集、整数集以及符号串集等,一般默认载体为非空集合。
- 运算本质为映射 S m → S S^m\rightarrow S Sm→S,其前域是 m m m 次笛卡尔积, m m m 表示了运算的元数,例如常见的加法,就是二元运算;取绝对值,就是一元运算。
- 代数常数是载体中的某些特异元素,它们对于上面定义的运算有某些特殊性质,例如 0 ∗ x = 0 , 0 + x = x . 0*x=0,0+x=x. 0∗x=0,0+x=x.
- 一个代数系统,我们通常使用如下的元组表示: < S , ∗ , k > <S,*,k> <S,∗,k>
- 我们说两个代数是同一种类的,需要满足下面的条件:①构成成分相同,这里考察运算和代数常数,运算数量、运算元数以及常数数量都要相同,注意不考虑载体;②相同的公理规则,每一条公理是用载体元素和代数运算的符号表示的方程。
- 【例】具有
<
N
,
+
,
0
>
<N,+,0>
<N,+,0> 形式构成成分和下述公理的代数类:
① a + b = b + a ; ①~a+b=b+a; ① a+b=b+a;
② ( a + b ) + c = a + ( b + c ) ; ②~(a+b)+c=a+(b+c); ② (a+b)+c=a+(b+c);
③ a + 0 = a . ③~a+0=a. ③ a+0=a. - 代数系统 < I , ∗ , 1 > <I,*,1> <I,∗,1> 属于上述代数类, I I I 代表整数集, ∀ x , y , z ∈ I , x ∗ y = y ∗ x , ( x ∗ y ) ∗ z = x ∗ ( y ∗ z ) , x ∗ 1 = x . \forall~x,y,z\in I~,~x*y=y*x~,~(x*y)*z=x*(y*z)~,~x*1=x. ∀ x,y,z∈I , x∗y=y∗x , (x∗y)∗z=x∗(y∗z) , x∗1=x.
- < ρ ( S ) , ∪ , Φ > <\rho(S),\cup,\Phi> <ρ(S),∪,Φ> 属于上述代数类, ρ ( S ) \rho(S) ρ(S) 代表集合 S S S 的幂集, ∀ s 1 , s 2 , s 3 ∈ ρ ( S ) , s 1 ∪ s 2 = s 2 ∪ s 1 , ( s 1 ∪ s 2 ) ∪ s 3 = s 1 ∪ ( s 2 ∪ s 3 ) , s 1 ∪ Φ = s 1 . \forall~s_1,s_2,s_3\in\rho(S)~,~s_1\cup s_2=s_2\cup s_1~,~(s_1\cup s_2)\cup s_3=s_1\cup(s_2\cup s_3)~,~s_1\cup\Phi=s_1. ∀ s1,s2,s3∈ρ(S) , s1∪s2=s2∪s1 , (s1∪s2)∪s3=s1∪(s2∪s3) , s1∪Φ=s1.
代数常数.
- 常数是载体中联系于运算的具有特殊性质的元素,例如代数系统 < I , + , 0 > <I,+,0> <I,+,0> 中,任何元素加上 0 0 0 都不会变化;再比如 < I , ∗ , 1 > <I,*,1> <I,∗,1> 中,任何数与 1 1 1 相乘也不会变化。
幺元.
- 设 ∗ * ∗ 是定义在载体 S S S 上的二元运算, 1 l ∈ S 1_l\in S 1l∈S,如果对于 ∀ x ∈ S \forall~x\in S ∀ x∈S 都有 1 l ∗ x = 1 l 1_l*x=1_l 1l∗x=1l那么称元素 1 l 1_l 1l 对于运算 ∗ * ∗ 是左幺元,相应地还有由 x ∗ 1 r = 1 r x*1_r=1_r x∗1r=1r 定义的右幺元。
- 统一地,如果有元素 1 ∈ S 1\in S 1∈S,满足 ∀ x ∈ S , 1 ∗ x = x ∗ 1 = x \forall~x\in S~,~1*x=x*1=x ∀ x∈S , 1∗x=x∗1=x那么 1 1 1 称为运算 ∗ * ∗ 的幺元。注意这里的 ∗ * ∗ 代表二元运算, 1 1 1 代表载体 S S S 的某个元素。
零元.
- 类似幺元的定义,对于 0 ∈ S 0\in S 0∈S,如果满足 ∀ x ∈ S , 0 ∗ x = x ∗ 0 = 0 \forall~x\in S~,~0*x=x*0=0 ∀ x∈S , 0∗x=x∗0=0那么 0 0 0 称为运算 ∗ * ∗ 的零元,基于上面给出的左、右幺元定义,不难理解左、右零元。
- 考虑下面表格给出的代数系统 A = < { a , b , c } , @ > A=<\{a,b,c\},@> A=<{a,b,c},@>,其中表格行列交点代表的是运算结果 x @ y . x@y. x@y.
@ @ @ | a | b | c |
---|---|---|---|
a | a | b | b |
b | a | b | c |
c | a | b | a |
- 以 x x x 代表任意元素,可以发现 x @ a = a , x @ b = b x@a=a,x@b=b x@a=a,x@b=b,因此 a , b a,b a,b 是 @ @ @ 的右零元;并且发现 b @ x = x b@x=x b@x=x,因此 b b b 也是左幺元,该代数系统中没有右幺元,左零元。
- 【定理】如果对于一个二元运算 ∗ * ∗ 而言存在左、右幺元 1 l , 1 r 1_l,1_r 1l,1r,那么 1 l = 1 r = 1. 1_l=1_r=1. 1l=1r=1.
- 【证明】根据左、右幺元的性质,可得: 1 l ∗ 1 r = 1 l = 1 r 1_l*1_r=1_l=1_r 1l∗1r=1l=1r记为 1 1 1,即得到 1 l = 1 r = 1. 1_l=1_r=1. 1l=1r=1.
- 类似地对于零元也有类似定理,即 0 l = 0 r = 0 0_l=0_r=0 0l=0r=0,根据左、右零元的性质,得到: 0 l ∗ 0 r = 0 l = 0 r = 0. 0_l*0_r=0_l=0_r=0. 0l∗0r=0l=0r=0.
- 至此我们得到如下推论:一个二元运算的零元、幺元如果存在,那么它是唯一的。
逆元.
- 逆元的定义需要确保幺元存在,对于代数系统 A = < S , ∗ , 1 > A=<S,*,1> A=<S,∗,1> 而言, ∗ * ∗ 是二元运算, 1 1 1 是幺元。
- 如果 x ∗ y = 1 x*y=1 x∗y=1 成立,那么称 y y y 是 x x x 的右逆元, x x x 是 y y y 的左逆元; y ∗ x = 1 y*x=1 y∗x=1 成立有对称的结论。如果两等式同时成立,那么 x , y x,y x,y 互为逆元,通常将 x x x 的逆元记为 x − 1 . x^{-1}. x−1.
- 考虑下表给出的代数系统:
@ @ @ | a | b | c |
---|---|---|---|
a | a | a | b |
b | a | b | c |
c | a | c | c |
- 其中 b b b 是幺元,它满足 b @ x = x @ b = x b@x=x@b=x b@x=x@b=x,由于 a @ c = b a@c=b a@c=b,因此 a a a 是 c c c 的左逆元, c c c 是 a a a 的右逆元, b b b 的逆元是自身,即 b = b − 1 . b=b^{-1}. b=b−1.
- 对于代数系统 A = < I , + , 0 > A=<I,+,0> A=<I,+,0>,其中幺元为 0 0 0,对于 ∀ x ∈ I \forall~x\in I ∀ x∈I,都有逆元 x − 1 = − x x^{-1}=-x x−1=−x 满足 x − 1 + x = 0. x^{-1}+x=0. x−1+x=0.
- 【定理】对于满足结合律的二元运算 ∗ * ∗,如果一个元素 x x x 同时具有左、右逆元,那么其左右逆元相等;换言之, x x x 的逆元具有唯一性。
- 【证明】左逆元满足 l ∗ x = 1 l*x=1 l∗x=1,右逆元满足 x ∗ r = 1 x*r=1 x∗r=1,从而有: l ∗ ( x ∗ r ) = l ∗ 1 = l = ( l ∗ x ) ∗ r = 1 ∗ r = r l*(x*r)=l*1=l=(l*x)*r=1*r=r l∗(x∗r)=l∗1=l=(l∗x)∗r=1∗r=r
- 从上述证明过程中我们发现, l ∗ x = 1 = x ∗ r l*x=1=x*r l∗x=1=x∗r,其最终结果 l = r l=r l=r 等价于将 x x x 从等式两边约去。
- 可约的概念定义如下: ∀ x , y ∈ S , ( x ∗ a = y ∗ a ) ∧ ( a ∗ x = a ∗ y ) ⇒ ( x = y ) \forall~x,y\in S~,~(x*a=y*a)\wedge(a*x=a*y)\Rightarrow (x=y) ∀ x,y∈S , (x∗a=y∗a)∧(a∗x=a∗y)⇒(x=y)则称 a a a 是可约的。
- 因此上面关于逆元性质的发现可以重新表述如下:对于载体上的可结合运算 ∗ * ∗,如果元素 a ∈ S a\in S a∈S 是可逆元素,那么 a a a 对于运算 ∗ * ∗ 可以约去。 简单记为可逆元素可约。
- 【证明】假设 a ∗ x = a ∗ y a*x=a*y a∗x=a∗y,并且 a a a 可逆,其逆元记为 a − 1 a^{-1} a−1,上式两边同时乘以 a − 1 a^{-1} a−1,得到: a − 1 ∗ ( a ∗ x ) = a − 1 ∗ ( a ∗ y ) a^{-1}*(a*x)=a^{-1}*(a*y) a−1∗(a∗x)=a−1∗(a∗y)根据结合律即可得到 x = y x=y x=y,所以可逆元素 a a a 可约。
- 注意可约元素不一定是可逆的,例如对于代数系统 < I , ∗ , 1 , 0 > <I,*,1,0> <I,∗,1,0>,除了 0 0 0 以外都是可以约去的元素,但这当中只有 1 1 1 可逆。
子代数.
- 以下讨论的代数系统构成如下: A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,∗,Δ,k>其中 ∗ * ∗ 是二元运算, Δ \Delta Δ 是一元运算, k k k 为代数常数。
- 【封闭】指集合对于某个运算封闭,设 Δ , ∗ \Delta,* Δ,∗ 分别是集合 S S S 的一元、二元运算, S ′ ⊆ S . S'\subseteq S. S′⊆S. 如果下面的蕴含式成立: ( ∀ a , b ∈ S ′ ) ⇒ ( a ∗ b ∈ S ′ ) \Big(\forall~a,b\in S'\Big)\Rightarrow\Big(a*b\in S'\Big) (∀ a,b∈S′)⇒(a∗b∈S′)那么称 S ′ S' S′ 对于运算 ∗ * ∗ 封闭;
- 同理如果 ( ∀ a ∈ S ′ ) ⇒ ( Δ a ∈ S ′ ) \Big(\forall~a\in S'\Big)\Rightarrow\Big(\Delta a\in S'\Big) (∀ a∈S′)⇒(Δa∈S′)称 S ′ S' S′ 对于运算 Δ \Delta Δ 封闭。
- 考虑整数集的子集 S ′ = { 1 , 2 , 3 , 4 } S'=\{1,2,3,4\} S′={1,2,3,4},它对与加法运算是不封闭的,因为 3 + 3 = 6 ∉ S ′ 3+3=6\notin S' 3+3=6∈/S′,而对于取绝对值、取最大值是封闭的: ∀ x , y ∈ S ′ , ∣ x ∣ ∈ S ′ , max { x , y } ∈ S ′ \forall~x,y\in S'~,~|x|\in S'~,~\max\{x,y\}\in S' ∀ x,y∈S′ , ∣x∣∈S′ , max{x,y}∈S′
- 给定代数系统 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,∗,Δ,k>,如果存在 S S S 的一个子集 S ′ S' S′ 满足对于运算 ∗ , Δ *,\Delta ∗,Δ 封闭,并且 k ∈ S ′ k\in S' k∈S′,那么称新构造出的代数系统 A ′ = < S ′ , ∗ , Δ , k > A'=<S',*,\Delta,k> A′=<S′,∗,Δ,k> 是 A A A 的子代数。
- 真子代数是除了平凡子代数以外的子代数,其中平凡子代数包括 A A A 本身(最大子代数)和以 A A A 的常数集合为 S ′ S' S′ 的最小子代数(需要满足常数集合对运算封闭).
同态(Homomorphism).
- 代数系统在结构上的一致性被称为同构,定义如下,给定代数系统
A
=
<
S
,
∗
,
Δ
,
k
>
A=<S,*,\Delta,k>
A=<S,∗,Δ,k> 和
A
′
=
<
S
′
,
∗
′
,
Δ
′
,
k
′
>
A'=<S',*',\Delta',k'>
A′=<S′,∗′,Δ′,k′>,如果存在一双射函数
h
h
h 满足:
① h : S → S ′ ; ①~h:S\rightarrow S'; ① h:S→S′;
② h ( a ∗ b ) = h ( a ) ∗ ′ h ( b ) ; ②~h(a*b)=h(a)*'h(b); ② h(a∗b)=h(a)∗′h(b);
③ h ( Δ a ) = Δ ′ h ( a ) ; ③~h(\Delta a)=\Delta'h(a); ③ h(Δa)=Δ′h(a);
④ h ( k ) = k ′ . ④~h(k)=k'. ④ h(k)=k′.
那么映射函数 h h h 称为从代数系统 A A A 到 A ′ A' A′ 的同构, A ′ A' A′ 称为 A A A 在函数 h h h 下的同构象,其中性质 ② , ③ ②,③ ②,③ 可以理解为原代数系统的运算在新的代数系统中得到保持。 - 同构意味着两个代数系统有相同的构成成分(运算与常数),载体的基数相同(否则不会存在双射函数)以及映射 A A A 中的每一个常数到 A ′ A' A′ 的对应常数(代数常数不存在时不考虑本条).
- 同构基本意味着两个代数系统只是不同名的相同结构,简单地替换符号就能够从一个转换到另外一个。例如 < R + , ∗ , 1 > <R^+,*,1> <R+,∗,1> 和 < R , + , 0 > <R,+,0> <R,+,0>,构造如下的双射函数: h : R + → R , h ( x ) = l n ( x ) h:R^+\rightarrow R~,~h(x)=ln(x) h:R+→R , h(x)=ln(x)
- 验证 h ( x ) h(x) h(x) 确实为同构函数, ∀ a , b ∈ R + \forall~a,b\in R^+ ∀ a,b∈R+,我们能够推出: h ( a ∗ b ) = l n ( a ∗ b ) = l n ( a ) + l n ( b ) = h ( a ) + h ( b ) h(a*b)=ln(a*b)=ln(a)+ln(b)=h(a)+h(b) h(a∗b)=ln(a∗b)=ln(a)+ln(b)=h(a)+h(b) h ( 1 ) = l n ( 1 ) = 0 h(1)=ln(1)=0 h(1)=ln(1)=0所以 < R + , ∗ , 1 > <R^+,*,1> <R+,∗,1> 同构于 < R , + , 0 > . <R,+,0>. <R,+,0>.
- 将上述过程逆转,构造双射函数: g : R → R + , g ( x ) = e x g:R\rightarrow R^+~,~g(x)=e^x g:R→R+ , g(x)=ex可以验证 g ( x ) g(x) g(x) 是从 < R , + , 0 > <R,+,0> <R,+,0> 到 < R + , ∗ , 1 > <R^+,*,1> <R+,∗,1> 的同构。 ∀ a , b ∈ R , g ( 0 ) = e 0 = 1 \forall~a,b\in R~,~g(0)=e^0=1 ∀ a,b∈R , g(0)=e0=1 g ( a + b ) = e a + b = e a ∗ e b = g ( a ) ∗ g ( b ) g(a+b)=e^{a+b}=e^a*e^b=g(a)*g(b) g(a+b)=ea+b=ea∗eb=g(a)∗g(b)
- 代数 < N , + > <N,+> <N,+> 与 < I + , ∗ > <I^+,*> <I+,∗> 不是同构的,其证明方法极为巧妙,通过反证法给出。
- 假设两代数系统同构,那么对于 I + I^+ I+ 中的某个质数 p p p,必然 ∃ x ∈ N \exist~x\in N ∃ x∈N,使得 h ( x ) = p h(x)=p h(x)=p,我们总是可以取到 p p p 使得 x ≥ 2. x≥2. x≥2. 那么根据同构函数 h h h 的性质,我们有: p = h ( x ) = h ( x + 0 ) = h ( x ) ∗ h ( 0 ) (1) p=h(x)=h(x+0)=h(x)*h(0)\tag{1} p=h(x)=h(x+0)=h(x)∗h(0)(1) p = h ( x ) = h ( x − 1 + 1 ) = h ( x − 1 ) ∗ h ( 1 ) (2) p=h(x)=h(x-1+1)=h(x-1)*h(1)\tag{2} p=h(x)=h(x−1+1)=h(x−1)∗h(1)(2)由于 p p p 是质数,因此只能素因子分解为 1 ∗ p 1*p 1∗p,从而我们从 ( 1 ) (1) (1) 可知, h ( x ) = 1 h(x)=1 h(x)=1 和 h ( 0 ) = 1 h(0)=1 h(0)=1 必然有一个成立;同理 ( 2 ) (2) (2) 说明 h ( x − 1 ) = 1 h(x-1)=1 h(x−1)=1 和 h ( 1 ) = 1 h(1)=1 h(1)=1 必然有一个成立,这蕴含着 1 1 1 是两个元素的象,这与 h h h 是双射函数矛盾,因此上述自然数加法与正整数乘法不同构。
- 【定理】同构关系是等价关系,记同构关系为 R R R,即 R R R 满足自反、对称和传递性质。
- 【证明】自反性易证,只需取 h ( x ) = x h(x)=x h(x)=x 即可;对称性实际在上面演示 < R + , ∗ , 1 > <R^+,*,1> <R+,∗,1> 和 < R , + , 0 > <R,+,0> <R,+,0> 的同构时已经给出了证明方法。
- 传递性证明:设 A = < S a , + a , k a > , B = < S b , + b , k b > A=<S_a,+_a,k_a>,B=<S_b,+_b,k_b> A=<Sa,+a,ka>,B=<Sb,+b,kb> 同构,同构函数为 h h h; B , C = < S c , + c , k c > B,C=<S_c,+_c,k_c> B,C=<Sc,+c,kc> 同构,同构函数为 g g g,记 a 1 , a 2 ∈ A ; b 1 , b 2 ∈ B ; c 1 , c 2 ∈ C a_1,a_2\in A;~b_1,b_2\in B;~c_1,c_2\in C a1,a2∈A; b1,b2∈B; c1,c2∈C构造函数: f = g ⋅ h f=g·h f=g⋅h易知 f f f 是双射函数,我们可以得到: f ( a 1 + a a 2 ) = g ( h ( a 1 + a a 2 ) ) = g ( b 1 + b b 2 ) = c 1 + c c 2 f(a_1+_aa_2)=g\Big(h(a_1+_aa_2)\Big)=g(b_1+_bb_2)=c_1+_cc_2 f(a1+aa2)=g(h(a1+aa2))=g(b1+bb2)=c1+cc2常数的推导同理,至此同构关系是等价关系得证。
- 显然同构是一种极为严格的代数系统之间的关系,如果我们对其进行一定程度的条件放松,不要求 h h h 是双射函数,保持其他条件,就得到了同态的定义,仅需要删去同构定义中的双射要求,稍有不同的是 < h ( S ) , ∗ ′ , Δ ′ , k ′ > <h(S),*',\Delta',k'> <h(S),∗′,Δ′,k′> 称为同态象, h h h 称为 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,∗,Δ,k> 到 A ′ = < S ′ , ∗ ′ , Δ ′ , k ′ > A'=<S',*',\Delta',k'> A′=<S′,∗′,Δ′,k′> 的同态。
- 对于函数 h h h,如果是单射函数,则称为单一同态monomorphism;如果是满射函数,则称为满同态epimorphism。
- 对于映射 f : I → I , f ( x ) = k x , k ∈ I f:I\rightarrow I~,f(x)=kx,k\in I f:I→I ,f(x)=kx,k∈I,那么 f f f 是从 < I , + , 0 > <I,+,0> <I,+,0> 到自身的同态,称为自同态,注意若此时 k = 0 k=0 k=0,那么 f ( x ) ≡ 0 f(x)≡0 f(x)≡0 既不是单射也不是满射,但满足同态的要求: f ( x + y ) = k x + k y = f ( x ) + f ( y ) f(x+y)=kx+ky=f(x)+f(y) f(x+y)=kx+ky=f(x)+f(y) f ( 0 ) = 0 f(0)=0 f(0)=0当 k ≠ 0 k\neq0 k=0 时,成为单一同态;当 k = ± 1 k=±1 k=±1 时,成为自同构。
- 考虑自然数加法和自然数模 k k k 加法,即 < N , + , 0 > <N,+,0> <N,+,0> 与 < N k , + k , 0 > <N_k,+_k,0> <Nk,+k,0>,构造满射函数 f : N → N k , f ( x ) = x ( m o d k ) f:N\rightarrow N_k~,~f(x)=x(mod~k) f:N→Nk , f(x)=x(mod k),验证其满足同态要求: f ( x + y ) = ( x + y ) ( m o d k ) = x ( m o d k ) + k y ( m o d k ) = f ( x ) + k f ( y ) f(x+y)=(x+y)(mod~k)=x(mod~k)+_ky(mod~k)=f(x)+_kf(y) f(x+y)=(x+y)(mod k)=x(mod k)+ky(mod k)=f(x)+kf(y) f ( 0 ) = 0 f(0)=0 f(0)=0因此上述函数 f f f 称为满同态。
模运算中 ( a + b ) ( m o d k ) = ( a ( m o d k ) + b ( m o d k ) ) ( m o d k ) = a ( m o d k ) + k b ( m o d k ) . (a+b)(mod~k)=\Big(a(mod~k)+b(mod~k)\Big)(mod~k)=a(mod~k)+_kb(mod~k). (a+b)(mod k)=(a(mod k)+b(mod k))(mod k)=a(mod k)+kb(mod k).
- 设 Σ \Sigma Σ 是有限非空字母表, Σ ∗ \Sigma^* Σ∗ 是其星闭包,也即字符串集合,构造满射函数 h : Σ ∗ → N , h ( x ) = ∣ x ∣ . h:\Sigma^*\rightarrow N~,~h(x)=|x|. h:Σ∗→N , h(x)=∣x∣. 那么 h h h 是从代数系统 < Σ ∗ , ⊕ , ϵ > <\Sigma^*,\oplus,\epsilon> <Σ∗,⊕,ϵ> 到 < N , + , 0 > <N,+,0> <N,+,0> 的满同态,其中 ⊕ \oplus ⊕ 表示字符串连接,验证如下: f ( x ⊕ y ) = ∣ x ⊕ y ∣ = ∣ x ∣ + ∣ y ∣ = f ( x ) + f ( y ) f(x\oplus y)=|x\oplus y|=|x|+|y|=f(x)+f(y) f(x⊕y)=∣x⊕y∣=∣x∣+∣y∣=f(x)+f(y) f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0
- 【定理】 h h h 是从 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,∗,Δ,k> 到 A ′ = < S ′ , ∗ ′ , Δ ′ , k ′ > A'=<S',*',\Delta',k'> A′=<S′,∗′,Δ′,k′> 的同态,那么 A A A 的同态象 < h ( S ) , ∗ ′ , Δ ′ , k ′ > <h(S),*',\Delta',k'> <h(S),∗′,Δ′,k′> 是 A ′ A' A′ 的子代数。
- 子代数需要满足的是集合 h ( S ) h(S) h(S) 需要对运算 ∗ ′ , Δ ′ *',\Delta' ∗′,Δ′ 封闭。
- 首先由于 h : S → S ′ h:S\rightarrow S' h:S→S′,所以 h ( S ) ⊆ S ′ h(S)\subseteq S' h(S)⊆S′ 自然成立;
- 运算 ∗ ′ *' ∗′: ∀ a , b ∈ h ( S ) , ∃ x , y ∈ S \forall~a,b\in h(S),\exist~x,y\in S ∀ a,b∈h(S),∃ x,y∈S 使得 h ( x ) = a , h ( y ) = b h(x)=a,h(y)=b h(x)=a,h(y)=b,因此 a ∗ ′ b = h ( x ) ∗ ′ h ( y ) = h ( x ∗ y ) ∈ h ( S ) a*'b=h(x)*'h(y)=h(x*y)\in h(S) a∗′b=h(x)∗′h(y)=h(x∗y)∈h(S),封闭性得证。
- 运算 Δ ′ \Delta' Δ′:证明思路相似。
- 对于 A ′ A' A′ 中的代数常数 k k k, h ( k ) = k ′ ∈ h ( S ) . h(k)=k'\in h(S). h(k)=k′∈h(S).
- 该定理指明了同态象 < h ( S ) , ∗ ′ , Δ ′ , k ′ > <h(S),*',\Delta',k'> <h(S),∗′,Δ′,k′> 和代数 A ′ = < S ′ , ′ ∗ , Δ ′ , k ′ > A'=<S','*,\Delta',k'> A′=<S′,′∗,Δ′,k′> 的关系,前者是后者的子代数。下一定理给出了同态象与原代数 A A A 之间一脉相承的性质。
- 【定理】给定代数 A = < S , ∗ , + , k > , A ′ = < S ′ , ∗ ′ , + ′ , k ′ > A=<S,*,+,k>,A'=<S',*',+',k'> A=<S,∗,+,k>,A′=<S′,∗′,+′,k′>,函数 h h h 是从 A A A 到 A ′ A' A′ 的同态, ∗ , + *,+ ∗,+ 都是二元运算,记同态象为 A ′ ′ = < h ( S ) , ∗ ′ , + ′ , k ′ > A''=<h(S),*',+',k'> A′′=<h(S),∗′,+′,k′>,其中的运算具有如下性质:
- 【1】若 ∗ * ∗ 在 A A A 中是可交换或可结合的,那么在 A ′ ′ A'' A′′ 中, ∗ ′ *' ∗′ 也是可交换或可结合的,对于运算 + + + 同理。
- 【证明】已知运算 ∗ * ∗ 是可交换的,所以 h ( x 1 ) ∗ ′ h ( x 2 ) = h ( x 1 ∗ x 2 ) = h ( x 2 ∗ x 1 ) = h ( x 2 ) ∗ ′ h ( x 1 ) . h(x_1)*'h(x_2)=h(x_1*x_2)=h(x_2*x_1)=h(x_2)*'h(x_1). h(x1)∗′h(x2)=h(x1∗x2)=h(x2∗x1)=h(x2)∗′h(x1). 对于结合性的证明类似,都是基于同态函数的性质。
- 【2】若对于 ∗ * ∗ 运算,原代数 A A A 中有幺元或零元 e e e,则同态象代数 A ′ ′ A'' A′′ 中有幺元或零元 h ( e ) h(e) h(e),此处需要注意, h ( S ) ⊆ S ′ h(S)\subseteq S' h(S)⊆S′,除非 h h h 是满射函数,否则 h ( e ) h(e) h(e) 不一定是 A ′ A' A′ 的幺元或零元。
- 【证明】对 A A A 中的幺元 e e e 以及 ∀ a ∈ A \forall~a\in A ∀ a∈A我们有 e ∗ a = a e*a=a e∗a=a,根据同态函数的性质,得到 h ( a ) = h ( e ∗ a ) = h ( e ) ∗ ′ h ( a ) h(a)=h(e*a)=h(e)*'h(a) h(a)=h(e∗a)=h(e)∗′h(a),因此 h ( e ) h(e) h(e) 是代数 A ′ ′ A'' A′′ 的幺元,零元的证明同理。
- 【3】对于运算 ∗ * ∗,如果一个 A A A 中的元素 x x x 具有逆元 x − 1 x^{-1} x−1,那么对应地,它在 A ′ ′ A'' A′′ 中的象 h ( x ) h(x) h(x) 具有逆元 h ( x − 1 ) . h(x^{-1}). h(x−1).
- 【证明】根据性质 2 2 2 我们知道, e , h ( e ) e,h(e) e,h(e) 分别是 A , A ′ ′ A,A'' A,A′′ 的幺元,并且 x ∗ x − 1 = e x*x^{-1}=e x∗x−1=e,于是我们得到 h ( x ) ∗ ′ h ( x − 1 ) = h ( x ∗ x − 1 ) = h ( e ) . h(x)*'h(x^{-1})=h(x*x^{-1})=h(e). h(x)∗′h(x−1)=h(x∗x−1)=h(e).
- 【4】如果在 A A A 中二元运算 ∗ * ∗ 对于二元运算 + + + 是可分配的,那么在 A ′ ′ A'' A′′ 中, ∗ ′ *' ∗′ 对 + ′ +' +′ 是可分配的。
- 【证明】可分配是指: x ∗ ( y + z ) = x ∗ y + x ∗ z x*(y+z)=x*y+x*z x∗(y+z)=x∗y+x∗z基于同态函数的性质我们得到: h ( x ) ∗ ′ ( h ( y ) + ′ h ( z ) ) = h ( x ) ∗ ′ h ( y + z ) = h ( x ∗ ( y + z ) ) = h ( x ∗ y + x ∗ z ) = h ( x ) ∗ ′ h ( y ) + ′ h ( x ) ∗ ′ h ( z ) . h(x)*'\Big(h(y)+'h(z)\Big)=h(x)*'h(y+z)=h\Big(x*(y+z)\Big)=h\Big(x*y+x*z\Big)=h(x)*'h(y)+'h(x)*'h(z). h(x)∗′(h(y)+′h(z))=h(x)∗′h(y+z)=h(x∗(y+z))=h(x∗y+x∗z)=h(x)∗′h(y)+′h(x)∗′h(z).
同余关系.
- 从名字来看,同余和同态相似度很高,但同态的本质是函数;而同余的本质是关系,并且是一种特殊的等价关系,它能够在运算中保持等价的性质。
- 【等价关系保持】给定代数系统 A = < S , ∗ , Δ > A=<S,*,\Delta> A=<S,∗,Δ>, ∼ \sim ∼ 是其载体 S S S 上的一个等价关系,任取 a , b , c ∈ S . a,b,c\in S. a,b,c∈S. 等价关系保持定义如下:
- 对于二元运算 ∗ * ∗,如果 a ∼ b a\sim b a∼b 时有 a ∗ c ∼ b ∗ c a*c\sim b*c a∗c∼b∗c 和 c ∗ a ∼ c ∗ b c*a\sim c*b c∗a∼c∗b 成立,则称等价关系 ∼ \sim ∼ 在运算 ∗ * ∗ 下具有置换性质。个人理解如下:对于运算 a ∗ c a*c a∗c,如果将 a a a 置换为与其等价的元素 b b b,得到的新结果与原结果等价,因此称为置换性质,也说等价关系 ∼ \sim ∼ 在运算 ∗ * ∗ 下得到保持。
- 一元运算 Δ \Delta Δ 的置换性质更加简明,如果 a ∼ b a\sim b a∼b 时有 Δ a ∼ Δ b \Delta a\sim\Delta b Δa∼Δb 成立,那么称等价关系 ∼ \sim ∼ 对于 Δ \Delta Δ 保持。
- 【定义】给定代数系统 < S , ∗ > <S,*> <S,∗>, R R R 是定义在其载体集合上的等价关系,如果 R R R 对于运算 ∗ * ∗ 保持,那么称 R R R 是关于 ∗ * ∗ 的同余关系Congruence.
- 模运算是等价关系中最典型的同余关系,从名称就可以见一斑。给定代数系统 < I , − > <I,-> <I,−> 和模 k k k 等价关系 R R R,其中 k ∈ I + k\in I^{+} k∈I+,任取两等价元素 a , b ∈ [ a ] R , a ∼ b . a,b\in[a]_R,a\sim b. a,b∈[a]R,a∼b.
- 根据模等价关系的性质,我们有: a ∼ b ⇒ a − b = k n a\sim b\Rightarrow a-b = kn a∼b⇒a−b=kn ( a − c ) − ( b − c ) = k n (a-c)-(b-c)=kn (a−c)−(b−c)=kn ( c − a ) − ( c − b ) = − k n (c-a)-(c-b)=-kn (c−a)−(c−b)=−kn因此 a − c ∼ b − c a-c\sim b-c a−c∼b−c 且 c − a ∼ c − b c-a\sim c-b c−a∼c−b,因此模 k k k 等价关系是关于二元减法的同余关系,将二元减法替换为二元加法、一元减法,可证关于加法、一元减法也是同余关系。对于乘法,需要注意模运算的性质: a c − b c = ( b + k n ) c − b c = k n ∗ c ac-bc=(b+kn)c-bc=kn*c ac−bc=(b+kn)c−bc=kn∗c因此 a c ∼ b c . ac\sim bc. ac∼bc.
- 给定典型代数系统 A = < S , ∗ Δ > A=<S,*\Delta> A=<S,∗Δ>,如果 S S S 上的等价关系 ∼ \sim ∼,对一切元素 a , b , c ∈ S a,b,c\in S a,b,c∈S 满足:
- 若 a ∼ b a\sim b a∼b,则 a ∗ c ∼ b ∗ c a*c\sim b*c a∗c∼b∗c 且 c ∗ a ∼ c ∗ b ; c*a\sim c*b; c∗a∼c∗b;
- 若 a ∼ b a\sim b a∼b,则 Δ a ∼ Δ b . \Delta a\sim \Delta b. Δa∼Δb.
- 那么称 ∼ \sim ∼ 为代数 A A A 上的同余关系,其诱导的等价类也进一步称为同余类。
- 同余这一名词来源于模 k k k 等价的概念,可以视为相等这一典型等价关系的扩展,同余中的元素是经历了运算之后可以从某个角度看作是相等的。
- 【定理】等价关系 ∼ \sim ∼ 关于二元运算 ∗ * ∗ 是一个同余关系,当且仅当 a ∼ b , c ∼ d a\sim b,c\sim d a∼b,c∼d 成立时有 a ∗ c ∼ b ∗ d a*c\sim b*d a∗c∼b∗d 成立。
- 充分性:考虑 a ∼ b , c ∼ c a\sim b,c\sim c a∼b,c∼c,于是根据前件我们有 a ∗ c ∼ b ∗ c a*c\sim b*c a∗c∼b∗c,同理可得 c ∗ a ∼ c ∗ b c*a\sim c*b c∗a∼c∗b,因此 ∼ \sim ∼ 是同余关系,充分性得证。
- 必要性:若 ∼ \sim ∼ 是同余关系,那么: a ∼ b ⇒ a ∗ c ∼ b ∗ c a\sim b\Rightarrow a*c\sim b*c a∼b⇒a∗c∼b∗c c ∼ d ⇒ b ∗ c ∼ b ∗ d c\sim d\Rightarrow b*c\sim b*d c∼d⇒b∗c∼b∗d根据等价关系的传递性我们有: a ∗ c ∼ b ∗ d a*c\sim b*d a∗c∼b∗d必要性得证。
- 同余和同态之间,前者是代数上的关系,后者是代数之间的映射,二者也并非全无关系。其中同态可以诱导出一个同余关系。
- 首先从等价关系入手,我们给定代数 A = < S , ∗ , Δ > , A ′ = < S ∗ , ∗ ′ , Δ ′ > A=<S,*,\Delta>,A'=<S*,*',\Delta'> A=<S,∗,Δ>,A′=<S∗,∗′,Δ′> 以及同态函数 h h h,构造 S S S 上的等价关系如下: ∀ a , b ∈ S , a ∼ b ⇔ h ( a ) = h ( b ) \forall~a,b\in S~,~a\sim b\Leftrightarrow h(a)=h(b) ∀ a,b∈S , a∼b⇔h(a)=h(b)而后我们需要证明,这一由同态函数诱导出的等价关系是代数 A A A 上的同余关系。
- 一元运算:假设 a ∼ b a\sim b a∼b,根据等价关系定义有 h ( a ) = h ( b ) h(a)=h(b) h(a)=h(b),所以 Δ ′ h ( a ) = Δ ′ h ( b ) \Delta'h(a)=\Delta'h(b) Δ′h(a)=Δ′h(b),根据同态函数性质有 h ( Δ a ) = h ( Δ b ) h\big(\Delta a\big)=h\big(\Delta b\big) h(Δa)=h(Δb),因此 Δ a ∼ Δ b \Delta a\sim\Delta b Δa∼Δb, ∼ \sim ∼ 是关于 Δ \Delta Δ 的同余关系。
- 二元运算:基于上面证明的定理,我们已经得到了等价关系 ∼ \sim ∼,于是只要证明当 a ∼ b , c ∼ d a\sim b,c\sim d a∼b,c∼d 成立时有 a ∗ c ∼ b ∗ d a*c\sim b*d a∗c∼b∗d 成立即可推出 ∼ \sim ∼ 是同余关系。根据等价关系定义: h ( a ) = h ( b ) , h ( c ) = h ( d ) h(a)=h(b)~,~h(c)=h(d) h(a)=h(b) , h(c)=h(d)因此做乘法后等式依然成立: h ( a ) ∗ ′ h ( c ) = h ( b ) ∗ ′ h ( d ) h(a)*'h(c)=h(b)*'h(d) h(a)∗′h(c)=h(b)∗′h(d)根据同余函数性质有: h ( a ∗ c ) = h ( b ∗ d ) h(a*c)=h(b*d) h(a∗c)=h(b∗d)因此 a ∗ c ∼ b ∗ d a*c\sim b*d a∗c∼b∗d 得证,从而 ∼ \sim ∼ 是关于 ∗ * ∗ 的同余关系。
- 综上,由同态函数诱导出的自然等价关系是代数 A A A 上的同余关系。
商代数.
- 商代数是建立在代数系统以及同余关系之上的,首先规范关于等价关系的记号,若 ∼ \sim ∼ 是等价关系,那么 ∀ x ∈ S , [ x ] \forall~x\in S~, [x] ∀ x∈S ,[x] 表示其所属的等价类, S / ∼ S/\sim S/∼ 是等价关系诱导出的商集,即等价类的集合族。
- 给定代数系统 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,∗,Δ,k> 以及其上的同余关系 ∼ \sim ∼,那么可以诱导出其商代数: A / ∼ = < S / ∼ , ∗ ′ , Δ ′ , [ k ] > A/\sim=<S/\sim,*',\Delta',[k]> A/∼=<S/∼,∗′,Δ′,[k]>其中商代数的运算定义如下: ∀ [ a ] , [ b ] ∈ S / ∼ , [ a ] ∗ ′ [ b ] = [ a ∗ b ] \forall~[a],[b]\in S/\sim~,~[a]*'[b]=[a*b] ∀ [a],[b]∈S/∼ , [a]∗′[b]=[a∗b] Δ ′ [ a ] = [ Δ a ] \Delta'[a]=[\Delta a] Δ′[a]=[Δa]
- 对于上面定义的运算 Δ ′ , ∗ ′ \Delta',*' Δ′,∗′,它们的操作数都是等价类,是与表示元素无关的,这从某种程度上反映出等价类中元素的不可分辨性,见《决策系统与粗糙集》.
- 对于 Δ ′ \Delta' Δ′,如果 [ a ] = [ b ] [a]=[b] [a]=[b],那么 a ∼ b a\sim b a∼b,因为 ∼ \sim ∼ 是同余关系,所以 Δ a ∼ Δ b \Delta a\sim\Delta b Δa∼Δb,因此 [ Δ a ] = [ Δ b ] [\Delta a]=[\Delta b] [Δa]=[Δb],与表示元素无关得证。
- 对于 ∗ ′ *' ∗′,如果 [ a ] = [ b ] , [ c ] = [ d ] [a]=[b],[c]=[d] [a]=[b],[c]=[d],那么 a ∼ b , c ∼ d a\sim b,c\sim d a∼b,c∼d,再根据同余关系性质中证明的定理,我们有 a ∗ c ∼ b ∗ d a*c\sim b*d a∗c∼b∗d,因此 [ a ∗ c ] = [ b ∗ d ] = [ a ] ∗ ′ [ c ] = [ b ] ∗ ′ [ d ] [a*c]=[b*d]=[a]*'[c]=[b]*'[d] [a∗c]=[b∗d]=[a]∗′[c]=[b]∗′[d],与表示元素无关得证。
- 观察运算 ∗ ′ *' ∗′ 的定义式,如果我们构造函数 ϕ ( x ) = [ x ] \phi(x)=[x] ϕ(x)=[x],即函数值是自变量的等价类,那么可以将 ∗ ′ *' ∗′ 的定义式改写如下: ϕ ( a ) ∗ ′ ϕ ( b ) = ϕ ( a ∗ b ) \phi(a)*'\phi(b)=\phi(a*b) ϕ(a)∗′ϕ(b)=ϕ(a∗b)和我们在定义同态时给出的形式完全一致,并且简单地从定义式我们就能看出, ∗ ′ *' ∗′ 继承了 ∗ * ∗ 的很多性质(如果有的话),例如可交换性、结合性以及零元幺元等,这些结论都可以参照同态部分进行验证。
- 给定集合 S S S 上的等价关系 ∼ \sim ∼,定义规范映射: g : S → S / ∼ , g ( x ) = [ x ] g:S\rightarrow S/\sim~,~g(x)=[x] g:S→S/∼ , g(x)=[x]如果 S S S 是代数 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,∗,Δ,k> 的载体并且 ∼ \sim ∼ 是 A A A 上的同余关系,那么规范映射函数 g g g 是从 A A A 到其商代数 A / ∼ = < S / ∼ , ∗ ′ , Δ ′ , [ k ] > A/\sim=<S/\sim,*',\Delta',[k]> A/∼=<S/∼,∗′,Δ′,[k]> 的同态。
- 【证明】 g ( a ) ∗ ′ g ( b ) = [ a ] ∗ ′ [ b ] = [ a ∗ b ] = g ( a ∗ b ) g(a)*'g(b)=[a]*'[b]=[a*b]=g(a*b) g(a)∗′g(b)=[a]∗′[b]=[a∗b]=g(a∗b) Δ g ( a ) = Δ [ a ] = [ Δ a ] = g ( Δ a ) \Delta g(a)=\Delta[a]=[\Delta a]=g\big(\Delta a\big) Δg(a)=Δ[a]=[Δa]=g(Δa) [ k ] = g ( k ) [k]=g(k) [k]=g(k)至此 g g g 是 A A A 到 A / ∼ A/\sim A/∼ 的同态得证。
- 截止到此条证明,代数系统、同态函数、同余关系以及商代数四位一体,全部串联起来。
- 【定理】给定代数系统 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,∗,Δ,k>,对于同态 f f f 决定的同态象 A ′ = < f ( S ) , ∗ ′ , Δ ′ , k ′ > A'=<f(S),*',\Delta',k'> A′=<f(S),∗′,Δ′,k′>,记由 f f f 诱导出的同余关系为 ∼ \sim ∼,那么存在从同态象 A ′ A' A′ 到商代数 A / ∼ = < S / ∼ , ∗ ′ ′ , Δ ′ ′ , [ k ] > A/\sim=<S/\sim,*'',\Delta'',[k]> A/∼=<S/∼,∗′′,Δ′′,[k]> 的同构 h . h. h.
- 上述包含的信息量可能有点大,首先,同态诱导出的自然等价关系 a ∼ b ⇔ f ( a ) = f ( b ) a\sim b\Leftrightarrow f(a)=f(b) a∼b⇔f(a)=f(b) 是一个同余关系在上面有过证明;其次,从原代数 A A A 到商代数 A / ∼ A/\sim A/∼ 之间存在同态,该同态是满射函数(规范映射);最后,上述定理表示,在商代数以及 A A A 的某一个同态象 A ′ A' A′ 之间存在同构。这某种程度上论证了商代数 "核"的地位,对于同构我们说过,是极为强烈的代数系统间关系,简单地替换符号就能从一个转换到另外一个。这也就意味着,对于 A A A 的所有同态象,我们只需要研究它所对应的商代数即可。
- 【证明】构造函数 h : A / ∼ → f ( S ) , h ( [ x ] ) = f ( x ) . h:A/\sim\rightarrow f(S)~,~h\big([x]\big)=f(x). h:A/∼→f(S) , h([x])=f(x).
- ① 证明 h h h 不依赖于等价类 [ x ] [x] [x] 的表示元素,如果 [ x ] = [ y ] [x]=[y] [x]=[y],那么 x ∼ y x\sim y x∼y,根据同态诱导出等价关系的定义可知 f ( x ) = f ( y ) f(x)=f(y) f(x)=f(y),因此 h ( [ x ] ) = h ( [ y ] ) . h\big([x]\big)=h\big([y]\big). h([x])=h([y]).
- ② 证明 h h h 是双射函数,首先证明 h h h 是单射函数, ∀ x 1 , x 2 ∈ S \forall~x_1,x_2\in S ∀ x1,x2∈S,如果 f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2),那么 x 1 ∼ x 2 x_1\sim x_2 x1∼x2,从而 [ x 1 ] = [ x 2 ] [x_1]=[x_2] [x1]=[x2],即若 h ( [ x 1 ] ) = h ( [ x 2 ] ) h\big([x_1]\big)=h\big([x_2]\big) h([x1])=h([x2]),那么 [ x 1 ] = [ x 2 ] [x_1]=[x_2] [x1]=[x2] 得证,所以 h h h 是单射函数;再证明 h h h 是满射函数,由于 f ( S ) f(S) f(S) 中的任意一个元素都可以表示为 f ( x ) f(x) f(x),对于任意的 x x x,其等价类 [ x ] [x] [x] 都存在,因此存在 [ x ] [x] [x] 使得 h ( [ x ] ) = f ( x ) . h\big([x]\big)=f(x). h([x])=f(x). 至此, h h h 是双射函数得证。
- ③ 证明 h h h 满足同构函数要求: h ( [ x ] ∗ ′ ′ [ y ] ) = h ( [ x ∗ y ] ) = f ( x ∗ y ) = f ( x ) ∗ ′ f ( y ) = h ( [ x ] ) ∗ ′ h ( [ y ] ) h\big([x]*''[y]\big)=h\big([x*y]\big)=f(x*y)=f(x)*'f(y)=h\big([x]\big)*'h\big([y]\big) h([x]∗′′[y])=h([x∗y])=f(x∗y)=f(x)∗′f(y)=h([x])∗′h([y]) h ( Δ ′ ′ [ x ] ) = h ( [ Δ x ] ) = f ( Δ x ) = Δ ′ f ( x ) = Δ ′ h ( [ x ] ) h\big(\Delta''[x]\big)=h\big([\Delta x]\big)=f(\Delta x)=\Delta'f(x)=\Delta'h\big([x]\big) h(Δ′′[x])=h([Δx])=f(Δx)=Δ′f(x)=Δ′h([x]) h ( [ k ] ) = f ( k ) = k ′ h\big([k]\big)=f(k)=k' h([k])=f(k)=k′
- 原代数
A
A
A,同态象
A
′
A'
A′ 以及商代数
A
/
∼
A/\sim
A/∼ 之间的关系如下图所示:
积代数.
- 从代数系统、同态函数到同余关系、商代数是联系密切的部分,积代数则是相对独立的定义。
- 给定代数 A ′ = < S ′ , ∗ ′ , Δ ′ , k ′ > , A ′ ′ = < S ′ ′ , ∗ ′ ′ , Δ ′ ′ , k ′ ′ > A'=\big<S',*',\Delta',k'\big>,A''=\big<S'',*'',\Delta'',k''\big> A′=⟨S′,∗′,Δ′,k′⟩,A′′=⟨S′′,∗′′,Δ′′,k′′⟩,可以借助笛卡尔积的概念将其组合成积代数 A ′ × A ′ ′ = < S ′ × S ′ ′ , ∗ , Δ , < k ′ , k ′ ′ > > . A'\times A''=\Big<S'\times S'',*,\Delta,\big<k',k''\big>\Big>. A′×A′′=⟨S′×S′′,∗,Δ,⟨k′,k′′⟩⟩.
- 其中新运算 ∗ , Δ *,\Delta ∗,Δ 的定义如下: < a , c > ∗ < b , d > = < a ∗ ′ c , b ∗ ′ ′ d > \big<a,c\big>*\big<b,d\big>=\big<a*'c,b*''d\big> ⟨a,c⟩∗⟨b,d⟩=⟨a∗′c,b∗′′d⟩ Δ < a , c > = < Δ ′ a , Δ ′ ′ c > \Delta\big<a,c\big>=\big<\Delta' a,\Delta'' c\big> Δ⟨a,c⟩=⟨Δ′a,Δ′′c⟩
- 仅当代数 A ′ , A ′ ′ A',A'' A′,A′′ 具有相同的构成成份时,才能定义积代数,并且积代数和原代数具有相同的构成成分。