Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 3 Myerson’s Lemma (上)

Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 3 Myerson’s Lemma (上)

过去的15年里,计算机科学与经济学之间进行了活跃的互动,催生了算法博弈论这一新兴领域。许多现代计算机科学中的核心问题,从大规模网络中的资源分配到在线广告,都涉及多个自利方之间的相互作用。经济学和博弈论提供了许多有用的模型和定义来思考这些问题。而且,思想的交流也是双向的,计算机科学中的概念在经济学中的重要性也在不断增加。
本书源于作者在斯坦福大学开设的算法博弈论课程,旨在为学生和其他新入门者提供一个快速而易懂的介绍,涵盖了该领域中许多最重要的概念。书中还包括在线广告、无线频谱拍卖、肾脏交换和网络管理的案例研究。
蒂姆·拉夫加登(Tim Roughgarden)是斯坦福大学计算机科学的副教授。由于他在算法博弈论方面的研究,他获得了ACM Grace Murray Hopper奖、科学与工程师总统早期职业奖(PECASE)、卡莱奖(Kalai Prize)以及社会选择与福利奖、数学规划协会的塔克奖(Tucker Prize)和EATCS-SIGACT的哥德尔奖(Gödel Prize)。他撰写了《自私路由与无序代价》(2005)一书,并合编了《算法博弈论》(2007)一书。

Lecture 3 Myerson’s Lemma

上一节课提倡了一种拍卖设计的两步法,旨在实现支配策略激励兼容性 (DSIC)、福利最大化和计算效率(第 2.6.4 节)。第一步假设竞标者如实出价,并确定如何将物品分配给竞标者以最大化社会福利。例如,在赞助搜索拍卖中,这一步是通过将第 i i i高的竞标者分配到第 i i i好的插槽来实现的。第二步推导出适当的销售价格,使得如实出价成为支配策略。本节课介绍并证明了迈尔森引理,这是一种强大且通用的工具,用于实现第二步。该引理适用于赞助搜索拍卖作为特例,第 4 和第 5 讲将进一步探讨其应用。

第 3.1 节介绍了单参数环境,这是对第 2 讲中提出的机制设计问题的方便推广。第 3.2 节将密封投标拍卖的三个步骤(第 2.2 节)重新表述为分配规则和支付规则。第 3.3 节定义了分配规则的两个属性:可实施性和单调性,并阐述和解释了迈尔森引理。第 3.4 节提供了迈尔森引理的证明概述;初次阅读时可以略过这一部分。迈尔森引理包括 DSIC 机制中支付的公式,第 3.5 节将这一公式应用于赞助搜索拍卖。

3.1 Single-Parameter Environments

在单参数环境中,表述迈尔森引理的抽象水平较高。这种环境包含 n n n个代理人。每个代理人 i i i都有一个私有的非负估值 v i v_i vi,表示她获取“每单位物品”的价值。最后,存在一个可行集合 X \boldsymbol X X,其中每个元素都是一个非负的 n n n维向量 ( x 1 , x 2 , … , x n ) (x_1, x_2, \dots, x_n) (x1,x2,,xn),其中 x i x_i xi表示分配给代理人 i i i的“物品数量”。

示例 3.1 (单项拍卖) 在单项拍卖中(第 2.1 节), X X X是由最多有一个 1 的 0-1 向量组成的集合,即 ∑ i = 1 n x i ≤ 1 \sum_{i=1}^n x_i \leq 1 i=1nxi1

示例 3.2 (k-单位拍卖) 对于有 k 个相同物品且每个竞标者最多只能得到一个物品的情况(练习 2.3),可行集合是满足 ∑ i = 1 n x i ≤ k \sum_{i=1}^n x_i \leq k i=1nxik的 0-1 向量的集合。

示例 3.3 (赞助搜索拍卖) 在赞助搜索拍卖中(第 2.6 节), X X X是对应竞标者与插槽分配的 n 维向量集合,其中每个插槽最多分配给一个竞标者,每个竞标者最多分配到一个插槽。如果竞标者 i i i被分配到插槽 j j j,那么分量 x i x_i xi等于她的插槽的点击率 α j \alpha_j αj

示例 3.4 (公共项目) 决定是否建造所有人都可以使用的公共项目(如新桥梁)可以通过集合 X = { ( 0 , 0 , … , 0 ) , ( 1 , 1 , … , 1 ) } X = \{(0, 0, \dots, 0), (1, 1, \dots, 1)\} X={(0,0,,0),(1,1,,1)}来建模。

示例 3.4 表明单参数环境足够广泛,能够涵盖不同于拍卖的应用。在这种抽象层次上,我们使用“代理人”而非“竞标者”这个术语。我们有时使用“报告”一词来代替“出价”。机制是一种在代理人拥有私有信息(如估值)时做出决策的通用程序,而拍卖则是一种专门用于商品和货币交换的机制。参见表 3.1。

表 3.1:拍卖和机制中术语的对应关系。拍卖是机制的一个特殊情况,专门用于商品和货币的交换。

auctionmechanism
bidderagent
bidreport
valuationvaluation

3.2 Allocation and Payment Rules

回想一下,在密封式拍卖中需要做出两个选择:谁获胜以及谁支付多少。这两个决策分别通过分配规则和支付规则形式化。以下是这类拍卖的三个步骤:

  1. 从所有代理人处收集出价 b = ( b 1 , … , b n ) \mathbf{b} = (b_1, \dots, b_n) b=(b1,,bn)。向量 b \mathbf{b} b被称为出价向量或出价配置。
  2. [分配规则] 选择一个可行分配 x ( b ) ∈ X ⊆ R n \mathbf{x}(\mathbf{b}) \in X \subseteq \mathbb{R}^{n} x(b)XRn,该分配是出价的函数。
  3. [支付规则] 选择支付 p ( b ) ∈ R n \mathbf{p}(\mathbf{b}) \in \mathbb{R}^{n} p(b)Rn,该支付也是出价的函数。

这种类型的程序被称为直接揭示机制,因为在第一步中代理人被要求直接揭示他们的私人估值。间接机制的一个例子是迭代上升拍卖(参见练习 2.7)。

在我们的准线性效用模型中,对于具有分配规则 x \mathbf{x} x和支付规则 p \mathbf{p} p的机制,代理人 i i i的效用为

u i ( b ) = v i ⋅ x i ( b ) − p i ( b ) u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) - p_i(\mathbf{b}) ui(b)=vixi(b)pi(b)

当出价配置为 b \mathbf{b} b时。

我们关注满足以下条件的支付规则:

p i ( b ) ∈ [ 0 , b i ⋅ x i ( b ) ] p_i(\mathbf{b}) \in [0, b_i \cdot x_i(\mathbf{b})] pi(b)[0,bixi(b)]

对每个代理人 i i i和出价配置 b \mathbf{b} b来说,约束条件 p i ( b ) ≥ 0 p_i(\mathbf{b}) \geq 0 pi(b)0等同于禁止卖方向代理人支付费用。而约束条件 p i ( b ) ≤ b i ⋅ x i ( b ) p_i(\mathbf{b}) \leq b_i \cdot x_i(\mathbf{b}) pi(b)bixi(b)则确保了一个诚实的代理人能够获得非负效用(你明白为什么吗?)

3.3 Statement of Myerson’s Lemma

接下来是两个重要的定义,都是关于分配规则的性质。

定义 3.5 (可实现的分配规则) 对于单参数环境,如果存在一个支付规则 p \mathbf{p} p,使得直接揭示机制 ( x , p ) (\mathbf{x}, \mathbf{p}) (x,p)是 DSIC(激励相容且诚实)的,那么分配规则 x \mathbf{x} x就是可实现的。

也就是说,可实现的分配规则是那些可以扩展为 DSIC 机制的规则。等价地,DSIC 机制在其分配规则上的投影就是可实现规则的集合。如果我们的目标是设计一个 DSIC 机制,那么我们必须局限于可实现的分配规则——它们构成了我们的“设计空间”。在这种术语下,我们可以重新表述第二讲结束时留下的问题:在赞助搜索拍卖中,福利最大化的分配规则——将第 i i i高的竞标者分配给第 i i i最好的插槽——是否是可实现的?

例如,考虑单项拍卖(示例 3.1)。将物品授予最高竞标者的分配规则是否是可实现的?当然——我们已经构建了一个支付规则,即第二价格规则,使其成为 DSIC 机制。那么,将物品授予第二高竞标者的分配规则呢?在这里,答案并不明确:我们尚未看到扩展它为 DSIC 机制的支付规则,但要说没有任何支付规则可能有效,似乎也有点困难。

定义 3.6 (单调分配规则) 对于单参数环境,如果对于每个代理人 i i i和其他代理人的出价 b − i \mathbf{b}_{-i} bi而言,分配给 i i i x i ( z , b − i ) x_i(z, \mathbf{b}_{-i}) xi(z,bi)随她的出价 z z z非递减,那么分配规则 x \mathbf{x} x就是单调的。

也就是说,在单调分配规则中,出价越高只会让你获得更多的“物品”。

例如,将物品授予最高竞标者的单项拍卖分配规则是单调的:如果你是获胜者,并且你提高了出价(保持其他出价不变),你将继续获胜。相比之下,将物品授予第二高竞标者的分配规则则是非单调的:如果你是获胜者并且大幅提高出价,你可能会输掉。

在赞助搜索拍卖中的福利最大化分配规则(示例 3.3)中,将第 i i i高的竞标者分配给第 i i i最好的插槽,这一规则是单调的。当竞标者提高她的出价时,她在排序中的位置只会提升,这只会增加她被分配到的插槽的点击率。

我们将迈尔森引理分为三个部分进行表述,每一部分在概念上都很有趣,并且在后续应用中很有用。

定理 3.7 (迈尔森引理) 固定一个单参数环境。

(a) 一个分配规则 x \mathbf{x} x是可实现的,当且仅当它是单调的。

(b) 如果 x \mathbf{x} x是单调的,那么存在唯一的支付规则 p \mathbf{p} p,使得直接揭示机制 ( x , p ) (\mathbf{x}, \mathbf{p}) (x,p)是 DSIC 的,并且当 b i = 0 b_i = 0 bi=0时, p i ( b ) = 0 p_i(\mathbf{b}) = 0 pi(b)=0

© 在(b)中提到的支付规则可以通过一个显式公式来给出。

迈尔森引理是我们构建大多数机制设计理论的基础。第(a)部分表明,定义 3.5 和 3.6 描述的实际上是完全相同的分配规则类。这种等价性非常强大:定义 3.5 描述了我们的设计目标,但在操作和验证上比较复杂,而定义 3.6 则更加“可操作”。通常,检查一个分配规则是否是单调的并不困难。第(b)部分表明,当一个分配规则是可实现的时,在如何分配支付以实现 DSIC 属性上没有歧义——只有一种方法可以做到这一点。此外,这个支付规则有一个相对简单且明确的公式(见第©部分),我们将在第 3.5 节中将这一性质应用于赞助搜索拍卖,并在第 5-6 讲中应用于收益最大化的拍卖设计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值