Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 4 Algorithmic Mechanism Design (上)

Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 4 Algorithmic Mechanism Design (上)

Lecture 4 Algorithmic Mechanism Design

本节课探讨了在单参数环境中设计满足 DSIC(策略性个体无利可图)、福利最大化以及计算效率高的机制,这些环境比第 2 和第 3 讲讨论的要复杂。这些环境足够普遍,以至于福利最大化问题是 NP 困难的,因此我们考虑那些仅能近似最大化社会福利的分配规则。虽然有很多技术可以设计这样的规则,但并非所有规则都能满足 Myerson 引理中要求的单调性。本节课还讨论了揭示原则,这是我们限制在直接揭示机制上的正式依据。

第 4.1 节介绍了背包拍卖,这是一种概念上简单的单参数环境,在这种环境中,福利最大化是一个计算上难以解决(即 NP 困难)的问题。第 4.2 节利用背包拍卖来说明算法机制设计中的一些典型结果,目标是设计 DSIC 和多项式时间机制,确保接近最优的福利。第 4.3 节介绍了揭示原则。

4.1 Knapsack Auctions

4.1.1 Problem Definition

背包拍卖是单参数环境的另一个例子(见第 3.1 节)。

例 4.1(背包拍卖) 在背包拍卖中,每个竞拍者 iii 具有一个公开的大小 w i w_i wi和一个私有的估值。卖方有一个容量 W W W。可行集 X X X定义为 0-1 向量 ( x 1 , … , x n ) (x_1, \dots, x_n) (x1,,xn),使得 ∑ i = 1 n w i x i ≤ W \sum_{i=1}^n w_i x_i \leq W i=1nwixiW。(通常, x i = 1 x_i = 1 xi=1表示 i i i是中标竞拍者。)

只要存在一个容量有限的共享资源,就会出现背包问题。例如,每个竞拍者的大小可以表示某公司电视广告的时长,估值表示该公司在超级碗期间播放广告的支付意愿,而卖方的容量则是商业广告时间段的长度。其他可以用背包拍卖建模的情形包括竞拍者希望将文件存储在共享服务器上,通过共享通信渠道发送数据流,或在共享超级计算机上执行进程。一个 k k k单元拍卖(例 3.2)对应于一个背包拍卖,其中对所有 i i i都有 w i = 1 w_i = 1 wi=1,且 W = k W = k W=k

现在,我们尝试使用两步设计范式(见第 2.6.4 节)来设计一个理想的拍卖。首先,我们假设我们收到了真实的出价,并在此基础上确定分配规则。接着,我们制定支付规则,将分配规则扩展为一个 DSIC 机制。

4.1.2 Welfare-Maximizing DSIC Knapsack Auctions

由于理想拍卖应当最大化福利,第一步的答案显而易见:通过以下方式定义分配规则:

x ( b ) = arg ⁡ max ⁡ X ∑ i = 1 n b i x i ( 4.1 ) x(b) = \arg\max_X \sum_{i=1}^n b_i x_i \quad (4.1) x(b)=argXmaxi=1nbixi(4.1)

也就是说,这个分配规则解决了一个背包问题实例,其中物品(即竞拍者)的价值是报告的出价 b 1 , … , b n b_1, \dots, b_n b1,,bn,而物品的大小是预先已知的大小 w 1 , … , w n w_1, \dots, w_n w1,,wn。根据定义,当竞拍者如实出价时,这个分配规则最大化了社会福利。这个分配规则在定义 3.6 的意义上也是单调的;参见练习 4.1。

4.1.3 Critical Bids

Myerson 引理(定理 3.7,部分 (a) 和 (b))保证了存在一个支付规则 p p p,使得机制 ( x , p ) (x, p) (x,p)是 DSIC 的。这个支付规则容易理解。固定一个竞拍者 i i i和其他竞拍者的出价 b − i \mathbf{b_{-i}} bi。由于分配规则是单调的,并且对每个竞拍者分配 0 或 1,因此分配曲线 x i ( ⋅ , b − i ) x_i(\cdot, \mathbf{b_{-i}}) xi(,bi)在某个断点 z z z之前为 0,在该点跳变为 1。

回顾公式 (3.5) 中的支付公式:

p i ( b i , b − i ) = ∑ j = 1 l z j ⋅ [ jump in  x i ( ⋅ , b − i )  at  z j ] p_i(b_i, \mathbf{b_{-i}}) = \sum_{j = 1}^l z_j \cdot [\text{jump in } x_i(\cdot, \mathbf{b_{-i}}) \text{ at } z_j] pi(bi,bi)=j=1lzj[jump in xi(,bi) at zj]

其中, z 1 , … , z ℓ z_1, \dots, z_\ell z1,,z是分配函数 x i ( ⋅ , b − i ) x_i(\cdot, \mathbf{b_{-i}}) xi(,bi) 在区间 [ 0 , b i ] [0, b_i] [0,bi]内的断点。因此,如果 i i i的出价低于 z z z,她将失败并支付 0。如果 i i i的出价高于 z z z,她支付 z ⋅ ( 1 − 0 ) = z z \cdot (1 - 0) = z z(10)=z。也就是说,当 i i i获胜时,她支付其关键出价——即在固定其他竞拍者的出价 b − i \mathbf{b_{-i}} bi不变的情况下,她仍能获胜的最低出价。这类似于单一物品的二价拍卖中熟悉的支付规则。

4.1.4 Intractability of Welfare Maximization

在 4.1.2 节中提出的机制是否在二价拍卖(定理 2.4)意义上是理想的?回想一下,这意味着该机制应当满足:

  1. 是 DSIC 的;
  2. 在假设真实出价的情况下实现福利最大化;
  3. 运行时间在输入大小的多项式时间内,其中输入大小是表示所有相关数字(出价、大小和容量)所需的比特数。

答案是否定的。原因在于背包问题是 NP 困难的。这意味着,除非 P = N P P = NP P=NP,否则无法以多项式时间实现公式 (4.1) 中的分配规则。因此,性质 (2) 和 (3) 是不相容的。

由于假设 P ≠ N P P \neq NP P=NP的情况下不存在理想的背包拍卖机制,这促使我们至少放宽三个目标中的一个。但应该放宽哪个呢?首先,放宽 DSIC 条件并不会有所帮助,因为正是第二个和第三个性质之间存在冲突。

一种合理的方法(虽然在本课程中不会深入讨论)是放宽第三个约束。对于背包拍卖来说,这尤其具有吸引力,因为使用动态规划可以在伪多项式时间内实现分配规则 (4.1)。更一般地说,在机制设计中,如果实例足够小或具有特定结构,并且你拥有足够的时间和计算能力来实现最优福利最大化,那就应该这样做。所得的分配规则是单调的,并且可以扩展为一个 DSIC 机制(见练习 4.1)。

在本讲余下的部分,我们将对第二个目标做出妥协——勉强接受近似最优的福利最大化,以换取计算效率,同时不失去 DSIC。

  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值