Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 4 Algorithmic Mechanism Design (下)

Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 4 Algorithmic Mechanism Design (下)

Lecture 4 Algorithmic Mechanism Design

4.2 Algorithmic Mechanism Design

算法机制设计是算法博弈论中最早且研究最为深入的分支之一,本节展示了该领域的一个典型结果。

在算法机制设计中,主导范式是尽可能少地放宽理想拍卖的第二个要求(福利最大化),同时满足第一个要求(DSIC)和第三个要求(多项式时间)。对于单参数环境,Myerson 引理(定理 3.7)将这一任务简化为设计一个多项式时间且单调的分配规则,使其尽可能接近社会福利最大化。

4.2.1 The Best-Case Scenario: DSIC for Free

在过去的 15 年里,算法机制设计领域取得了如此多进展的一个原因是,它与已经成熟的近似算法领域有很强的相似性。近似算法的主要目标是为 NP 困难的优化问题设计多项式时间算法,使其尽可能接近最优解。算法机制设计的目标完全相同,只是算法还必须遵守单调性约束。机制设计中的激励约束被巧妙地汇编为分配规则上的一个相对直观的额外约束,因此,算法机制设计实际上简化为在一种奇特限制的“计算模型”中的算法设计。

多项式时间 DSIC 机制的设计空间只会比多项式时间近似算法的小。最理想的情况是,额外的 DSIC(等价于单调性)约束不会导致额外的福利损失,超出我们已经因多项式时间要求而不得不承受的损失。到目前为止,我们很幸运,因为精确的福利最大化会自动产生单调的分配规则(见练习 4.1)。对于近似福利最大化,是否也存在类似的事实呢?

4.2.2 Knapsack Auctions Revisited

为了在具体环境中探讨前述问题,我们回到背包拍卖。对于背包问题,有几种启发式算法在最坏情况下具有良好的性能保证。例如,考虑以下分配规则:在给定出价 b b b的情况下,通过一个简单的贪心算法选择一个可行集——一个获胜者集合 S S S,其总大小 ∑ i ∈ S w i \sum_{i \in S} w_i iSwi不超过容量 w w w

由于移除那些 w i > W w_i > W wi>W的竞拍者不会产生影响,我们可以假设对每个竞拍者 i i i都有 w i ≤ W w_i \leq W wiW

贪心背包启发式算法

  1. 对竞拍者进行排序和重新索引,使得

b 1 w 1 ≥ b 2 w 2 ≥ ⋯ ≥ b n w n \frac{b_1}{w_1} \geq \frac{b_2}{w_2} \geq \dots \geq \frac{b_n}{w_n} w1b1w2b2wnbn

  1. 按照这个顺序选择获胜者,直到一个竞拍者的大小不再适合,然后停止。
  2. 返回前一步的解决方案或最高出价者的方案,取决于哪个方案的社会福利更高。

该贪心算法是背包问题的 1 2 \frac{1}{2} 21近似算法,这意味着对于背包问题的每个实例,该算法返回的可行解的总价值至少是最大可能值的 1 2 \frac{1}{2} 21

这一事实意味着以下保证。

定理 4.2(背包近似保证):在假设竞拍者出价真实的情况下,贪心分配规则实现的社会福利至少是最大社会福利的 50%。

证明(概述):
考虑真实的出价 v 1 , … , v n v_1, \dots, v_n v1,,vn已知的大小 w 1 , … , w n w_1, \dots, w_n w1,,wn和容量 W W W。假设作为一个思想实验,我们通过允许竞拍者被部分选择来简化问题,相应的价值按比例计算。

例如,如果一个价值为 10 的竞拍者被选择了 70%,那么它对社会福利的贡献就是 7。针对这个“分数背包问题”有一个贪心算法:如上面的步骤 (1) 所述,对竞拍者进行排序,然后按此顺序选择获胜者,直到完全使用整个容量(必要时部分选择最后一个获胜者)。一个简单的交换论证可以证明,该算法在所有可行的分数背包问题解中实现了福利最大化(见练习 4.4)。

在最优的分数解中,假设排序后的前 k k k个竞拍者获胜,第 k + 1 k+1 k+1个竞拍者部分获胜。在贪心分配规则的步骤 (1) 和 (2) 中实现的社会福利,正好是前 k k k个竞拍者的总价值。而仅包含最高出价者的解的社会福利,至少是第 k + 1 k+1 k+1个竞拍者的分数值。这两个解中较好的那个解的福利,至少是最优分数解福利的一半,因此,至少是原问题最优(非分数)解福利的一半。

上述贪心分配规则也是单调的(练习 4.5)。利用 Myerson 引理(定理 3.7),我们可以将其扩展为一个 DSIC 机制,该机制在多项式时间内运行,并且在假设真实出价的情况下,能够实现至少占最大可能社会福利 50% 的社会福利。

你可能已经产生了错误的安全感,认为每个合理的分配规则都是单调的。我们目前见过的唯一一个非单调规则是单项拍卖中的“次高价获胜”规则(第 3.3 节),不过我们对这个规则并不在意。但需要提醒你一点。

警告:自然的分配规则并不总是单调的。

例如,对于每个 ϵ > 0 \epsilon > 0 ϵ>0,都有一个 ( 1 − ϵ ) (1 - \epsilon) (1ϵ)近似算法能够在输入的多项式时间和 1 ϵ \frac{1}{\epsilon} ϵ1时间内运行,这被称为“完全多项式时间近似方案(FPTAS)”(见问题 4.2)。该算法的标准实现所诱导的规则并不是单调的,尽管它可以通过调整来恢复单调性,而不降低近似保证(同样见问题 4.2)。这种情况在算法机制设计中是很典型的:对于一个感兴趣的 NP 困难优化问题,首先检查最先进的近似算法是否直接导致 DSIC 机制。如果没有,则调整它或设计一个新的近似算法,使其成为 DSIC 机制,且希望不会降低近似保证。

4.3 The Revelation Principle

4.3.1 DSIC Revisited

到目前为止,我们的机制设计理论仅研究了 DSIC 机制。

我们再次强调,追求 DSIC 保证是有充分理由的。首先,在 DSIC 机制中,参与者很容易弄清楚应该做什么:只需遵循显而易见的占优策略,真实地揭示自己的私人信息即可。

其次,设计者可以预测机制的结果,只需假设参与者都采用了占优策略,这是一个相对较弱的行为假设。然而,像第一价格拍卖(第 2.3 节)这样的非 DSIC 机制在实践中也很重要。

非 DSIC 机制能否实现 DSIC 机制无法实现的目标?要回答这个问题,我们需要分解 DSIC 定义(定义 2.3)中混合在一起的两个不同条件。

DSIC 条件

  1. 对于每一个估值情况,机制都有一个占优策略均衡——即每个参与者都采用占优策略时产生的结果。
  2. 在这个占优策略均衡中,每个参与者都如实地向机制报告她的私人信息。

存在一些机制满足条件 (1) 但不满足条件 (2)。举一个荒谬的例子,想象一个单项拍卖,卖方在接收到竞价 b b b后,对竞价 2 b 2b 2b 进行维克里拍卖。每个竞拍者的占优策略就是出价为她真实价值的一半。

揭示原理指出,假设在 4.3.1 节中满足条件 (1),那么条件 (2) 就是自动满足的。

定理 4.3(针对 DSIC 机制的揭示原理):对于每一个机制 M M M,如果每个参与者总是有一个占优策略,那么存在一个等价的直接揭示 DSIC 机制 M ′ M' M

在定理 4.3 中,“等价”意味着,对于每一个估值情况,参与者在直接揭示机制 M ′ M' M下的结果(例如拍卖的获胜者和销售价格)与参与者在机制 M M M中采用其占优策略时的结果完全相同。

证明:该证明使用了模拟论证;见图 4.2。根据假设,对于每一个参与者 i i i以及 i i i可能拥有的私人信息 v i v_i vi i i i 在给定机制 M M M中有一个占优策略 s i ( v i ) s_i(v_i) si(vi)

在这里插入图片描述

图 4.2: 启示原理的证明。构建导向机制 M ′ M' M,给出具有优势策略的机制 M M M

接下来,我们构造一个机制 M ′ M' M,让参与者将执行适当占优策略的责任委托给机制。具体来说,直接揭示机制 M ′ M' M接受来自代理人的竞价 b 1 , … , b n b_1, \dots, b_n b1,,bn。它将这些竞价 s 1 ( b 1 ) , … , s n ( b n ) s_1(b_1), \dots, s_n(b_n) s1(b1),,sn(bn)提交给机制 M M M,并选择与机制 M M M相同的结果。

机制 M ′ M' M是 DSIC 的:如果参与者 iii 拥有私人信息 viv_ivi,那么提交一个不同于 viv_ivi 的竞价,只会导致 M ′ M' M在机制 M M M中执行一个不同于 s i ( v i ) s_i(v_i) si(vi)的策略,这只会降低 i i i的效用。

定理 4.3 的要点在于,至少在原则上,如果你想设计一个具有占优策略的机制,那么不妨设计一个其中直接揭示(在拍卖中即为诚实竞价)是占优策略的机制。因此,诚实性本身并不是关键;真正使 DSIC 机制设计困难的是要求所期望的结果必须是一个占优策略均衡。

4.3.3 Beyond Dominant-Strategy Equilibria

我们能通过放宽第 4.3.1 节中的条件 (1) 来获得更好的机制吗?这个想法的直接问题是,当代理人没有占优策略时,我们需要更强的行为假设来预测参与者的行为以及机制的结果。例如,我们可以考虑相对于参与者私人信息的共同先验分布的贝叶斯-纳什均衡(见问题 5.3),或者在完全信息模型中的纳什均衡(类似于问题 3.1)。如果我们愿意做出这些假设,是否能够比 DSIC 机制取得更好的效果?答案是“有时可以”。因此,由于非 DSIC 机制在实践中很常见,发展超越 DSIC 机制的机制设计理论是很重要的。注释 5.5 和问题 5.3 简要地展示了这一理论。一个粗略的经验法则是,对于我们迄今为止研究的那些足够简单的问题,DSIC 机制能够完成非 DSIC 机制可以做到的一切。然而,在更复杂的问题中,放宽 DSIC 约束通常可以让设计者实现对 DSIC 机制来说证明不可能达到的性能保证。在这些情境下,DSIC 和非 DSIC 机制是无法相互比较的——前者享有更强的激励保证,而后者则拥有更好的性能保证。哪个更重要取决于具体应用的细节。

The upshot

背包拍卖模型描述了在有限容量的共享资源分配问题。竞标者拥有私人估值和公开已知的大小。在一个可行的结果中,获胜竞标者的总大小不能超过资源容量。

计算最大化社会福利的背包拍卖结果是一个 NP 困难问题。因此,如果 p ≠ n p p \neq np p=np,那么就不存在理想的背包拍卖。

在算法机制设计中,目标是在满足第一个(DSIC)和第三个(多项式时间)要求的前提下,尽量少地放宽理想拍卖的第二个要求(福利最大化)。在最佳情况下,存在一个具有近似福利保证的多项式时间 DSIC 机制,其性能与最先进的多项式时间近似算法相匹配。

最先进的福利最大化近似算法可能会或可能不会引入单调分配规则。

揭示原理指出,对于每一个具有占优策略均衡的机制,都存在一个等效的机制,其中直接揭示是占优策略均衡。

在许多复杂的机制设计问题中,非 DSIC 机制能够实现那些对 DSIC 机制来说不可达到的性能保证。

  • 16
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值