Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 4 Algorithmic Mechanism Design (下)

Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 4 Algorithmic Mechanism Design (下)

Lecture 4 Algorithmic Mechanism Design

4.2 Algorithmic Mechanism Design

算法机制设计是算法博弈论中最早且研究最为深入的分支之一,本节展示了该领域的一个典型结果。

在算法机制设计中,主导范式是尽可能少地放宽理想拍卖的第二个要求(福利最大化),同时满足第一个要求(DSIC)和第三个要求(多项式时间)。对于单参数环境,Myerson 引理(定理 3.7)将这一任务简化为设计一个多项式时间且单调的分配规则,使其尽可能接近社会福利最大化。

4.2.1 The Best-Case Scenario: DSIC for Free

在过去的 15 年里,算法机制设计领域取得了如此多进展的一个原因是,它与已经成熟的近似算法领域有很强的相似性。近似算法的主要目标是为 NP 困难的优化问题设计多项式时间算法,使其尽可能接近最优解。算法机制设计的目标完全相同,只是算法还必须遵守单调性约束。机制设计中的激励约束被巧妙地汇编为分配规则上的一个相对直观的额外约束,因此,算法机制设计实际上简化为在一种奇特限制的“计算模型”中的算法设计。

多项式时间 DSIC 机制的设计空间只会比多项式时间近似算法的小。最理想的情况是,额外的 DSIC(等价于单调性)约束不会导致额外的福利损失,超出我们已经因多项式时间要求而不得不承受的损失。到目前为止,我们很幸运,因为精确的福利最大化会自动产生单调的分配规则(见练习 4.1)。对于近似福利最大化,是否也存在类似的事实呢?

4.2.2 Knapsack Auctions Revisited

为了在具体环境中探讨前述问题,我们回到背包拍卖。对于背包问题,有几种启发式算法在最坏情况下具有良好的性能保证。例如,考虑以下分配规则:在给定出价 b b b的情况下,通过一个简单的贪心算法选择一个可行集——一个获胜者集合 S S S,其总大小 ∑ i ∈ S w i \sum_{i \in S} w_i iSwi不超过容量 w w w

由于移除那些 w i > W w_i > W wi>W的竞拍者不会产生影响,我们可以假设对每个竞拍者 i i i都有 w i ≤ W w_i \leq W wiW

贪心背包启发式算法

  1. 对竞拍者进行排序和重新索引,使得

b 1 w 1 ≥ b 2 w 2 ≥ ⋯ ≥ b n w n \frac{b_1}{w_1} \geq \frac{b_2}{w_2} \geq \dots \geq \frac{b_n}{w_n} w1b1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值