[冲激信号]展缩特性的推导

冲激信号定义

冲激信号,被戏称“看不见”的信号,在非零处的值小到看不着,而在零处的值却大到看不着,但是它却真实存在(具有一定的能量)。一种定义方式如下:
{ A δ ( t − t 0 ) = 0   ,   t ≠ t 0 A δ ( t − t 0 ) → + ∞   ,   t = t 0 ∫ − ∞ ∞ A δ ( t − t 0 ) d t = A \begin{cases} A\delta(t-t_0) = 0\ , \ t \not = t_0\\ A \delta(t-t_0) \to +\infty \ ,\ t = t_0\\ \int_{-\infty}^{\infty} A\delta(t-t_0) dt = A \end{cases} Aδ(tt0)=0 , t=t0Aδ(tt0)+ , t=t0Aδ(tt0)dt=A
冲激信号,更像是一种“归类”。由泛函数定义的冲激信号为
∫ − ∞ ∞ A δ ( t − t 0 ) f ( t ) d t = A f ( t 0 ) \int_{-\infty}^{\infty} A\delta(t-t_0)f(t) dt = Af(t_0) Aδ(tt0)f(t)dt=Af(t0)
冲激信号是能将任意连续信号 f ( t ) f(t) f(t) 映射为一个确定数值的一类信号,也就是说只要满足上式的映射信号,就是一个冲激信号。

展缩特性

泛函数的定义方式有利于我们的数学推导。

设存在一个冲激信号的形式为 δ ( a t + b ) \delta(at+b) δ(at+b),其中 a ≠ 0 a \not = 0 a=0。我们分别讨论 a a a 的正负的情况。

  1. a > 0 a > 0 a>0 时,写出积分形式,并作变量替换 m = a t + b m=at+b m=at+b, 则有
    ∫ − ∞ ∞ δ ( a t + b ) f ( t ) d t = ∫ − ∞ ∞ δ ( m ) f ( m − b a ) d m a = 1 a f ( − b a ) \begin{aligned} & \quad \int_{-\infty}^{\infty} \delta(at+b)f(t) dt \\ & = \textcolor{#ff0000}{\int_{-\infty}^{\infty}} \delta(m) f(\frac{m-b}{a}) \frac{dm}{a}\\ &= \frac{1}{a} f(-\frac{b}{a}) \end{aligned} δ(at+b)f(t)dt=δ(m)f(amb)adm=a1f(ab)
    上式的结果与冲激信号 1 a δ ( t + b a ) \frac{1}{a}\delta(t+\frac{b}{a}) a1δ(t+ab) 相同,即
    ∫ − ∞ ∞ 1 a δ ( t + b a ) f ( t ) d t = 1 a f ( − b a ) \int_{-\infty}^{\infty} \frac{1}{a}\delta(t+\frac{b}{a})f(t) dt = \frac{1}{a}f(-\frac{b}{a}) a1δ(t+ab)f(t)dt=a1f(ab)
    按照广义函数相等的准则,认为这两种信号的形式是等价的,即
    δ ( a t + b ) = 1 a δ ( t + b a ) , a > 0 \delta(at+b) = \frac{1}{a}\delta(t+\frac{b}{a}), a > 0 δ(at+b)=a1δ(t+ab),a>0

  2. a < 0 a < 0 a<0 时,与上一情况唯一的不同点在于变量替换后积分区间的变换(多了个负号)
    ∫ − ∞ ∞ δ ( a t + b ) f ( t ) d t = ∫ + ∞ − ∞ δ ( m ) f ( m − b a ) d m a = − ∫ − ∞ ∞ δ ( m ) f ( m − b a ) d m a = − 1 a f ( − b a ) \begin{aligned} & \quad \int_{-\infty}^{\infty} \delta(at+b)f(t) dt \\ & = \textcolor{#0000ff}{\int_{+\infty}^{-\infty}} \delta(m) f(\frac{m-b}{a}) \frac{dm}{a}\\ & = -\textcolor{#ff0000}{\int_{-\infty}^{\infty}} \delta(m) f(\frac{m-b}{a}) \frac{dm}{a}\\ &= -\frac{1}{a} f(-\frac{b}{a}) \end{aligned} δ(at+b)f(t)dt=+δ(m)f(amb)adm=δ(m)f(amb)adm=a1f(ab)
    最终有
    δ ( a t + b ) = − 1 a δ ( t + b a ) , a < 0 \delta(at+b) = -\frac{1}{a}\delta(t+\frac{b}{a}), a < 0 δ(at+b)=a1δ(t+ab),a<0

综上,即有
δ ( a t + b ) = 1 ∣ a ∣ δ ( t + b a ) \delta(at+b) = \frac{1}{|a|}\delta(t+\frac{b}{a}) δ(at+b)=a1δ(t+ab)


冲激偶信号的证明 也是类似的思路,首先是冲激偶信号泛函数定义为
∫ − ∞ ∞ A δ ′ ( t − t 0 ) f ( t ) d t = − A f ′ ( t 0 ) \int_{-\infty}^{\infty} A\delta'(t-t_0)f(t) dt = -Af'(t_0) Aδ(tt0)f(t)dt=Af(t0)
设某一个冲激偶信号的形式为 δ ′ ( a t + b ) \delta'(at+b) δ(at+b),其中 a ≠ 0 a \not = 0 a=0,则有:

  1. a > 0 a > 0 a>0 时,
    ∫ − ∞ ∞ δ ′ ( a t + b ) f ( t ) d t = ∫ − ∞ ∞ δ ′ ( m ) f ( m − b a ) d m a = − 1 a [ d f ( m − b a ) d m ] m = 0 = − 1 a ⋅ 1 a f ′ ( − b a ) \begin{aligned} & \quad \int_{-\infty}^{\infty} \delta'(at+b)f(t) dt \\ & = \textcolor{#ff0000}{\int_{-\infty}^{\infty}} \delta'(m) f(\frac{m-b}{a}) \frac{dm}{a}\\ &= -\frac{1}{a} \left[ \frac{d f(\frac{m-b}{a})}{dm}\right]_{m=0} \\ &= -\frac{1}{a} \cdot \frac{1}{a} f'(\frac{-b}{a}) \end{aligned} δ(at+b)f(t)dt=δ(m)f(amb)adm=a1[dmdf(amb)]m=0=a1a1f(ab)
    与冲激偶信号 1 a 2 δ ’ ( t + b a ) \frac{1}{a^2}\delta’(t+\frac{b}{a}) a21δ(t+ab) 相同,即
    ∫ − ∞ ∞ 1 a 2 δ ′ ( t + b a ) f ( t ) d t = − 1 a 2 f ( − b a ) \int_{-\infty}^{\infty} \frac{1}{a^2}\delta'(t+\frac{b}{a})f(t) dt = -\frac{1}{a^2}f(-\frac{b}{a}) a21δ(t+ab)f(t)dt=a21f(ab)
    根据广义函数等价原则,两者相等,即
    δ ′ ( a t + b ) = 1 a 2 δ ′ ( t + b a )   ,   a > 0 \delta'(at+b) = \frac{1}{a^2} \delta'(t+\frac{b}{a})\ , \ a > 0 δ(at+b)=a21δ(t+ab) , a>0

  2. a < 0 a < 0 a<0 时,同样的流程(注意积分区间的变换)
    ∫ − ∞ ∞ δ ′ ( a t + b ) f ( t ) d t = ∫ + ∞ − ∞ δ ′ ( m ) f ( m − b a ) d m a = − ∫ − ∞ ∞ δ ′ ( m ) f ( m − b a ) d m a = 1 a [ d f ( m − b a ) d m ] m = 0 = 1 a ⋅ 1 a f ′ ( − b a ) \begin{aligned} & \quad \int_{-\infty}^{\infty} \delta'(at+b)f(t) dt \\ & = \textcolor{#0000ff}{\int_{+\infty}^{-\infty}} \delta'(m) f(\frac{m-b}{a}) \frac{dm}{a}\\ & = -\textcolor{#ff0000}{\int_{-\infty}^{\infty}} \delta'(m) f(\frac{m-b}{a}) \frac{dm}{a}\\ &= \frac{1}{a} \left[ \frac{d f(\frac{m-b}{a})}{dm}\right]_{m=0} \\ &= \frac{1}{a} \cdot \frac{1}{a} f'(\frac{-b}{a})\\ \end{aligned} δ(at+b)f(t)dt=+δ(m)f(amb)adm=δ(m)f(amb)adm=a1[dmdf(amb)]m=0=a1a1f(ab)
    与冲激偶信号 − 1 a 2 δ ′ ( t + b a ) -\frac{1}{a^2}\delta'(t+\frac{b}{a}) a21δ(t+ab) 相同,即
    ∫ − ∞ ∞ − 1 a 2 δ ′ ( t + b a ) f ( t ) d t = 1 a 2 f ( − b a ) \int_{-\infty}^{\infty} -\frac{1}{a^2}\delta'(t+\frac{b}{a})f(t) dt = \frac{1}{a^2}f(-\frac{b}{a}) a21δ(t+ab)f(t)dt=a21f(ab)
    故两者等价,即
    δ ′ ( a t + b ) = − 1 a 2 δ ′ ( t + b a )   ,   a < 0 \delta'(at+b) = -\frac{1}{a^2} \delta'(t+\frac{b}{a})\ , \ a < 0 δ(at+b)=a21δ(t+ab) , a<0

综上,有
δ ′ ( a t + b ) = 1 a ∣ a ∣ δ ′ ( t + b a ) \delta'(at+b) = \frac{1}{a|a|}\delta'(t+\frac{b}{a}) δ(at+b)=aa1δ(t+ab)

  • 12
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wreng我是002

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值