【离散数学】 SEU - 11 - 2021/04/07 - Functions and Cardinality of Sets

Discrete Mathematics and its Applications (8th Edition)
2021/04/07 - Functions and Cardinality of Sets


2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.3 Functions

2.3.2 One-to-One and Onto Functions

Injection

A function f is said to be one-to-one, or an injection, if and only if f ( a ) = f ( b ) f (a) = f (b) f(a)=f(b) implies that a = b a = b a=b for all a and b in the domain of f f f. A function is said to be injective if it is one-to-one.

Surjection

A function f f f from A A A to B B B is called onto, or a surjection, if and only if for every element b ∈ B b \in B bB there is an element a ∈ A a \in A aA with f ( a ) = b f(a) = b f(a)=b. A function f f f is called surjective if it is onto.

Bijection

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. We also say that such a function is bijective.

Example: If f : A → A f:A\rightarrow A f:AA is injective, then it mist be surjective, so it is also bijective. True or False? Why?
Solution: If A A A is a finite set, it is obviously true. However, if it is infinite, then it is false.

To show

Suppose that f : A → B f : A \rightarrow B f:AB.
To show that f f f is injective: Show that if f ( x ) = f ( y ) f(x) = f(y) f(x)=f(y) for arbitrary x , y ∈ A x,y \in A x,yA, then x = y x = y x=y.
To show that f f f is not injective: Find particular elements x , y ∈ A x, y \in A x,yA such that x ≠ y x \ne y x=y and f ( x ) = f ( y ) f (x) = f (y) f(x)=f(y).
To show that f f f is surjective: Consider an arbitrary element y ∈ B y \in B yB and find an element x ∈ A x \in A xA such that f ( x ) = y f (x) = y f(x)=y.
To show that f f f is not surjective: Find a particular y ∈ B y \in B yB such that f ( x ) ≠ y f(x) \ne y f(x)=y for all x ∈ A x \in A xA.

2.3.3 Inverse Functions and Compositions of Functions

Inverse Functions

Let f f f be a one-to-one correspondence from the set A A A to the set B B B. The inverse function of f f f is the function that assigns to an element b b b belonging to B B B the unique element a in A A A such that f ( a ) = b f(a) = b f(a)=b. The inverse function of f is denoted by f − 1 f^{−1} f1. Hence, f − 1 ( b ) = a f^{−1}(b) = a f1(b)=a when f ( a ) = b f(a) = b f(a)=b.

Compositions of Functions

Let g g g be a function from the set A A A to the set B B B and let f f f be a function from the set B B B to the set C C C. The composition of the functions f f f and g g g, denoted for all a ∈ A a \in A aA by f ∘ g f\circ g fg, is the function from A A A to C C C defined by ( f ∘ g ) ( a ) = f ( g ( a ) ) (f\circ g)(a)=f(g(a)) (fg)(a)=f(g(a))

2.3.5 Some Important Functions

floor and ceiling function

2.5 Cardinality of Sets

The sets A A A and B B B have the same cardinality if and only if there is a one-to-one correspondence from A A A to B B B. When A A A and B B B have the same cardinality, we write ∣ A ∣ = ∣ B ∣ |A| = |B| A=B.

A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable. When an infinite set S S S is countable, we denote the cardinality of S S S by ℵ 0 \aleph_0 0 (where ℵ \aleph is aleph, the first letter of the Hebrew alphabet). We write ∣ S ∣ = ℵ 0 |S| = \aleph_0 S=0 and say that S S S has cardinality “aleph null.”

Remark:

  • The positive rational numbers are countable.
  • The real numbers are uncountable.

Assignment

Section 2.3
1, 5(a)(b)(d), 21, 23, 41, 51, 71
Section 2.5
3, 11, 13, 29, 37


ALL RIGHTS RESERVED © 2021 Teddy van Jerry
This blog is licensed under the CC 4.0 Licence.


See also

Teddy van Jerry’s CSDN Homepage
Teddy van Jerry’s GitHub Homepage

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值