人工智能咨询培训老师叶梓 转载标明出处
领域特定应用对人工智能模型的性能、成本和数据隐私提出了更高的要求。尤其是像GPT-4这样的先进大型语言模型(LLMs),虽然在复杂任务处理上展现出巨大潜力,但在实际部署中却面临着性能、成本和数据隐私之间的艰难抉择。为了解决这一问题,蚂蚁集团的研究人员提出了PEER(Plan, Execute, Express, Review)多智能体框架,旨在通过精确的问题分解、先进的信息检索、全面的总结和严格的自我评估来系统化领域特定任务。
PEER多智能体框架
PEER中的四个智能体角色
Plan(计划)智能体:该智能体使用模型从用户的领域特定(例如金融)查询中生成多个相关子问题。这些子问题作为解释框架,将原始查询分解为具体且可操作的标准,并扩展为全面分析的基础。
Execute(执行)智能体:该智能体为“Plan”智能体识别的每个子问题收集信息。使用这些子问题作为搜索标准,它从新闻、领域特定(例如金融)数据、报告和文章中找到相关信息,增强了准确性、效率和全面性。这些信息构成了解释领域事件和回答问题的基础。
Express(表达)智能体:该智能体综合收集的信息,执行全面的大模型推理,形成最终结论。它强调整合性推理,并提供符合用户需求的专业描述。
Review(审查)智能体:该智能体评估“Express”智能体的答案是否满足预设标准。如果满意,则提交最终答案;如果不满意,则提供修改建议,并启动另一轮PEER迭代,通过反馈提高答案质量。
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
PEER的循环工作机制
PEER多智能体合作框架的强大推理和分析能力源于其高效的任务分配、合作以及由“Review”智能体提供的反馈循环和自我优化。这确保了答案不断向最优解改进。如果答案未满足用户需求,“Review”智能体会为“Plan”、“Execute”或“Express”智能体提出修改建议。相关智能体随