昆仑万维Skywork-OR1凭32B硬刚DeepSeek 671B,彻底开源,免费商用

 想要掌握如何将大模型的力量发挥到极致吗?叶梓老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987

想快速掌握自动编程技术吗?叶老师专业培训来啦!这里用Cline把自然语言变代码,再靠DeepSeek生成逻辑严谨、注释清晰的优质代码。叶梓老师视频号上直播分享《用deepseek实现自动编程》限时回放。

视频号(直播分享):sphuYAMr0pGTk27  抖音号:44185842659

在人工智能领域,大模型的发展日新月异,不断推动着技术的边界。Skywork-OR1 系列模型作为一款开源的高性能推理模型,以其卓越的数学和代码推理能力,以及彻底的开源策略,引起了广泛关注。

Skywork-OR1 系列模型由昆仑万维天工团队开发,旨在通过大规模规则强化学习,利用精心设计的数据集和训练方案,提升模型在数学和代码推理方面的性能。该系列包括两个通用推理模型——Skywork-OR1-7B-Preview 和 Skywork-OR1-32B-Preview,以及一个专注于数学领域的专项模型 Skywork-OR1-Math-7B。

在评估模型性能方面,Skywork-OR1 系列采用了创新的 Avg@K 指标,而非传统的 Pass@1 指标。Avg@K 指标通过测量模型在 K 次独立尝试中的平均表现,减少了随机性的影响,增强了结果的可靠性。这种评估方式更能够反映模型的稳定性和推理一致性。

上图展示了 Skywork-OR1 系列模型在 AIME24、AIME25 和 LiveCodeBench 数据集上的性能表现。通过 Avg@K 指标,我们可以看到 Skywork-OR1-32B-Preview 在数学推理任务中表现优异,与参数规模高达 671B 的 DeepSeek-R1 模型持平,展现了其卓越的性价比。

Skywork-OR1 系列模型采取了彻底的开源策略,全面开放了模型权重、训练数据集和完整训练代码。这种透明度极高的开源方式,不仅为开发者社区提供了宝贵的资源,也促进了技术的共享和进步。目前,相关资源已上传至 GitHub 和 Huggingface 平台,方便开发者获取和使用。

昆仑万维计划在两周内发布 Skywork-OR1 系列模型的正式版本,并推出更为系统详尽的技术报告。技术报告将深入分享模型的训练方法、数据处理流程以及关键技术发现,为社区提供完全可复现的实践参考。

https://github.com/SkyworkAI/Skywork-OR1

<think>好的,用户想要了解国内各家公司的AI大模型排名。首先,我需要确定用户的需求是什么。他们可能是在做市场调研,或者在选择合作伙伴,也可能是学术研究。不管怎样,用户需要的是一个综合的排名,涵盖主要公司和他们的模型。 接下来,我需要回忆国内有哪些主要的公司推出了大模型。百度、阿里、腾讯、华为这些大厂肯定有。然后是字节跳动、科大讯飞、商汤科技、智谱AI、MiniMax、零一万物等。可能还有一些初创公司,但用户可能更关注知名度高的。 然后,排名的依据是什么?通常包括技术能力、应用场景、商业化程度、开源情况、创新能力等。但用户可能想要一个综合的排名,而不是分项评估。不过直接说排名可能有主观性,需要说明这一点。 我需要先列出每个公司的模型,比如百度的文心一言,阿里的通义千问,腾讯的混元,华为的盘古,字节的云雀,讯飞的星火,商汤的日日新,智谱的GLM,MiniMax的ABAB,零一万物的Yi系列,还有百川智能和深度求索的模型。 接下来,按什么顺序排列?可能需要根据技术实力、市场影响力、应用范围来排序。百度、阿里、腾讯、华为这些大厂可能在前列,但讯飞、商汤这些专注于AI的公司也有竞争力。字节作为新入局的,但资源多,可能排名也不低。另外,像智谱AI这样的初创公司,虽然成立时间不长,但技术上有亮点,比如GLM-4。 需要注意的是,排名可能因评价标准不同而变化,比如有的模型在特定领域表现好,有的在商业化上更成功。此外,开源模型和闭源模型也有区别,比如百川和深度求索的开源模型可能在开发者中更受欢迎。 还要考虑最新动态,比如最近几个月有没有新模型发布,或者性能提升。比如讯飞的星火大模型3.5可能在某些评测中表现不错,而华为的盘古强调B端应用,可能在企业级市场有优势。 另外,用户可能想知道这些模型的特点,比如多模态能力、参数规模、应用场景等。所以在介绍每个公司时,需要简要说明其模型的特色和优势。 可能还需要提到政策和数据安全的影响,国内模型更注重中文环境和本土化需求,这也是一个优势点。 最后,要避免绝对化的排名,而是给出一个分档,比如第一梯队、第二梯队,或者按领域划分,这样更客观。同时提醒读者排名是动态变化的,可能存在主观因素,建议参考第三方评测。 总结一下,我的回答结构应该是:先说明排名的主观性和动态性,然后分公司介绍其模型和特点,最后给出一个分档排名,并建议参考具体需求选择模型。</think>国内AI大模型的竞争格局目前处于快速发展阶段,各家公司在技术能力、应用场景和商业化进展上各有侧重。由于评价标准不同(如技术性能、生态布局、行业影响力等),以下排名综合了技术实力、市场声量及实际应用情况,仅供参考(截至2024年7月): --- ### **第一梯队(综合实力领先)** 1. **百度·文心一言(ERNIE Bot)** - 优势:依托搜索引擎数据和多年NLP技术积累,多模态能力突出,已迭代至4.0版本,覆盖搜索、内容创作、企业服务等领域。 - 生态:通过“文心大模型”开放平台赋能千行百业,商业化落地广泛。 2. **阿里云·通义千问(Qwen)** - 优势:参数规模达万亿级,开源版本(如Qwen-72B)受开发者关注,与阿里云生态深度整合,在电商、金融场景表现突出。 - 动态:通义2.5版本强化逻辑推理和长文本处理能力。 3. **科大讯飞·星火大模型(Spark)** - 优势:专注教育、医疗等垂直领域,语音交互能力国内领先,星火3.5版本在多项中文评测中排名前列。 - 应用:已落地智慧课堂、医疗辅诊等场景。 --- ### **第二梯队(技术突破/垂直领域领先)** 4. **字节跳动·云雀(Lark/Doubao)** - 优势:依托抖音、头条的海量数据,擅长内容生成与推荐,C端产品“豆包”用户增长迅速。 5. **华为·盘古大模型** - 优势:聚焦B端工业场景(气象预测、矿山调度等),联合昇腾AI生态,强调行业解决方案而非通用对话。 6. **智谱AI·GLM大模型** - 优势:清华系团队背景,GLM-4在多语言、代码生成能力突出,开源生态活跃(ChatGLM系列)。 7. **商汤科技·日日新(SenseNova)** - 优势:计算机视觉技术加持,多模态生成(如视频)能力较强,布局智慧城市、自动驾驶等场景。 8. **MiniMax·ABAB大模型** - 优势:聚焦AIGC赛道,旗下“海螺AI”在长文本生成和拟人化交互体验上有特色。 --- ### **第三梯队(快速追赶/细分赛道)** 9. **零一万物·Yi系列** - 亮点:李开复团队推出,Yi-34B曾登顶HuggingFace开源榜,长上下文处理能力突出。 10. **百川智能·Baichuan** - 亮点:王小川团队主导,Baichuan2开源模型在中文数学、代码任务表现优异。 11. **深度求索·DeepSeek** - 亮点:专注模型轻量化,DeepSeek-MoE架构在推理成本控制上有创新。 12. **昆仑万维·天工(Skywork)** - 动态:3.0版本支持万字上下文,重点布局海外市场。 --- ### **评价维度补充** - **开源影响力**:智谱AI(ChatGLM)、阿里(Qwen)、零一万物(Yi)的开源模型在开发者社区接受度较高。 - **垂直领域**:医疗(医联的MedGPT)、金融(恒生的Warren)、法律(幂律的ChatLaw)等赛道涌现专业模型。 - **政策支持**:北京、上海、深圳等地政府主导的联合实验室(如北京通用AI研究院)正推动国产算力与模型协同发展。 --- ### **争议与挑战** 1. **同质化竞争**:多数大模型在通用能力上趋同,差异化多依赖数据场景而非技术代差。 2. **算力瓶颈**:英伟达芯片限制下,国产算力(华为昇腾、寒武纪等)的适配仍需时间。 3. **商业化路径**:除云服务、API调用外,C端付费习惯尚未成熟,盈利模式待探索。 建议结合具体场景需求(如开源/闭源、中文理解、行业适配)选择模型,可参考权威评测(如SuperCLUE、C-Eval)的最新结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值