Towards Accurate One-Stage Object Detection with AP-Loss阅读笔记

Towards Accurate One-Stage Object Detection with AP-Loss


  • 作者认为在one-stage的detection中,detection和classification任务之间的gap影响了模型的performance,于是把classification task改为ranking task,把classification loss 改为ranking loss,并采用APloss作为target loss
  • 由于APloss是non-convex和non-differentiable,需要采取特殊的方法:
  1. 用SVM来学习APloss
  2. 修改loss为APloss的某个upper bound
  3. approximate gradient methods
  4. 论文提出的方法:改classification 为 ranking task,并使用一种error-driven的算法来optimize AP-loss,这里的error-driven的算法基于1957年提出的Perceptron Learning Algorithm,即采用sign函数作为activation function
  • 我只是个莫得感情的论文搬运机器大意上是说原来的模型每个bbox输出k+1维向量而文章提出的模型只输出一个标量但是会重复k遍,而label也改为标量形式:

In our framework, instead of one box with K + 1 dimensional score predictions, we replicate each box bi for K times to obtain bik where k = 1, · · · , K, and the k-th box is responsible for the k-th class. Each box bik will be assigned a label tik ∈ {−1, 0, 1} through the same IoU strategy (label −1 for not counted into the ranking loss). Therefore, in the training and testing phase, the detector will predict only one scalar score sik for each box bik.

在这里插入图片描述

  • 下面讲一下ap-loss的算法:
  1. 既然anchor box的输出是一个标量(先不管重复输出),可以设为 b i b_i bi,算得一个 x i j x_{ij} xij为两个anchor box之间差的度量,这里 s ( b i ; θ ) s(b_i;\theta) s(bi;θ)指模型参数为 θ \theta θ的时候第i个anchor box的输出score:在这里插入图片描述
  2. 同时需对label做类似的转换,表示 t i = 1 , t j = 0 t_i=1,t_j=0 ti=1tj=0 y i j = 1 y_{ij}=1 yij=1否则为0,这里t就是label
    在这里插入图片描述
  3. primary-loss为:在这里插入图片描述其中 H ( x i j ) H(x_{ij}) H(xij)即前文所提的符号函数:在这里插入图片描述
  4. AP-loss为:在这里插入图片描述其中 r a n k + ( i ) rank^+(i) rank+(i) s i s_i si在所有正样本中的排序值而 r a n k ( i ) rank(i) rank(i) s i s_i si在所有有效样本中的排序值, P = { i ∣ t i = 1 } , N = { i ∣ t i = 0 } P = \left\{ i|t_i = 1\right\}, N = \left\{i|t_i = 0\right\} P={iti=1},N={iti=0}L and y are vector form for all L i j L_{ij} Lij and y i j y_{ij} yij respectively, <, >means dot-product of two input vectors.注意 x,y,L都是d维向量,d为有效输出的anchor数。
  5. 所以optimize的目标为为在这里插入图片描述但这里的L是不可导的,需要采用特殊的方法
  6. Perceptron Learning Algorithm是这样的:

Suppose x i j x_{ij} xij is the input and L i j L_{ij} Lij is the current output, the update for x i j x_{ij} xij is thus ∆ x i j = L i j ∗ − L i j ∆x_{ij} = L^*_{ij} − L_{ij} xij=LijLij where L i j ∗ L^*_{ij} Lij is the desired output.

  1. 而论文的error-driven算法是这样的:

∆ x i j = − L i j ⋅ y i j ∆x_{ij} = −L_{ij} · y_{ij} xij=Lijyij

从loss的形式可以看出,当L·y为0时有最小的loss,而有两种情况,一种y为0,则L不论多少都没关系此时不更新,一种y为1则L期望为0,所以采取这样的更新形式

8.方向传播对于 s i s_i si的gradient的形式是这样的:在这里插入图片描述实践中即设一个 x i j x_{ij} xij 的梯度为 − ∆ x i j −∆x_{ij} xij,至于为什么是这种形式,论文中给出了推导,也不复杂,这里就不赘诉。

训练细节:
  • minibatch可以应用到AP-loss的ranking中
  • 前期训练由于 s i s_i si差距很小会导致较大的loss,训练不稳定,可以H(·)函数为在这里插入图片描述

experiment

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值