LLFormer 论文阅读笔记

Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and Transformer-Based Method

在这里插入图片描述

  • 这是南京大学在AAAI 2023发表的一篇AAAI2023 超高清图像暗图增强的工作。提出了一个超高清暗图增强数据集,提供了4K和8K的图片,同时提出了一个可用于暗图增强的transformer网络结构。
  • 数据集4K的有5999对训练和2100对测试。
  • 提出了一个称为LLFormer的网络结构,使用axis-based self-attention和dual gated mehcanism。
    在这里插入图片描述
  • axis-based transformer block其实就是先对行向量之间做注意力,再对列向量间做注意力,可以把时间复杂度从 W × H W\times H W×H变成 W + H W+H W+H
  • dual gated attention block 是如下公式,其中 ϕ \phi ϕ是GELU
  • 而Cross-layer Attention Fusion Block如下:
    在这里插入图片描述
  • 在自己数据集上的实验结果:
    在这里插入图片描述
  • 在LOL和fivek上的实验结果:
    在这里插入图片描述
  • 新的数据集和benchmark挺好的,新方法就一般,堆网络,也没有针对LLIE做出什么特殊的设计
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值