DAY1-深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别

活动地址:CSDN21天学习挑战赛

一、前期工作

1、设置GPU(如果是cpu,可忽略此步)

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2、导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3、归一化

数据归一化的作用
使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。
加快学习算法的收敛速度。

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28), (10000, 28, 28), (60000,), (10000,))
"""

4、可视化图片

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(train_labels[i])
plt.show()

在这里插入图片描述

5、调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))
"""

二、构建CNN网络模型

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),#卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
    
    layers.Flatten(),                              #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),		   #全连接层,特征进一步提取
    layers.Dense(10)                               #输出层,输出预期结果
])
# 打印网络结构
model.summary()

在这里插入图片描述

三、编译模型

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

在这里插入图片描述

五、预测

通过下面的网络结构,我们可以理解为输入一张图片,将会得到一组数,这组数代表了这张图片为数字0-9中每个数字的概率,out数字越大可能性越大。
在这里插入图片描述

plt.imshow(test_images[1].reshape(28,28))

在这里插入图片描述
输出测试集中第一张图片的预测结果:

pre = model.predict(test_images) # 对所有测试图片进行预测
pre[1] # 输出第一张图片的预测结果

在这里插入图片描述

六、知识点详解

本文使用的是最简单的CNN模型-LeNet-5。

1、MNIST手写数字数据集介绍

Mnist数据集分为两部分,分别含有60000张训练图片和10000张测试图片。

每一张图片包含28*28个像素。Mnist数据集把代表一张图片的二维数据转换成一个向量,长度为28 * 28=784。因此在Mnist的训练数据集中mnist.train.images是一个形状为[60000, 784]的张量,第一个维度数字用来索引图片,第二个维度数字用来索引每张图片中的像素点,图片里的某个像素的强度值介于0-1之间。
在这里插入图片描述
数据集下载地址:http://yann.lecun.com/exdb/mnist/

2、神经网络程序说明

在这里插入图片描述

3、网络结构说明

模型结构:
在这里插入图片描述
各层的作用:

输入层:将数据输入到训练网络中;
卷积层:使用卷积核提取图片特征;
池化层:进行下采样,用更高层的抽象表示图像特征;
Flatten层:将多维的输入一维化,常用在卷积层过渡到全连接层;
全连接层:起到“特征提取器”的作用;
输出层:输出结果。

参考资料

https://blog.csdn.net/llfjcmx/article/details/102841738

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Never give up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值